909 resultados para measurement and metrology
Resumo:
Prepared in cooperation with the cities of Madison, Middleton, Douglas County, University of Wisconsin-Extension, Geological and Natural History Survey, Army Corps of Engineers, Wisconsin Dept. of Natural Resources.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Shipping list no.: 92-0508-P.
Resumo:
Mode of access: Internet.
Resumo:
Contribution from Production and Marketing Administration.
Resumo:
A reprint of the original 1917 edition.
Resumo:
Bibliography: p. 76-82.
Resumo:
Mode of access: Internet.
Resumo:
What resources are universal for quantum computation? In the standard model of a quantum computer, a computation consists of a sequence of unitary gates acting coherently on the qubits making up the computer. This requirement for coherent unitary dynamical operations is widely believed to be the critical element of quantum computation. Here we show that a very different model involving only projective measurements and quantum memory is also universal for quantum computation. In particular, no coherent unitary dynamics are involved in the computation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Participation in at least 30 min of moderate intensity activity on most days is assumed to confer health benefits. This study accordingly determined whether the more vigorous household and garden tasks (sweeping, window cleaning, vacuuming and lawn mowing) are performed by middle-aged men at a moderate intensity of 3-6 metabolic equivalents (METs) in the laboratory and at home. Measured energy expenditure during self-perceived moderate-paced walking was used as a marker of exercise intensity. Energy expenditure was also predicted via indirect methods. Thirty-six males [Xmacr (SD): 40.0 (3.3) years; 179.5 (6.9) cm; 83.4 (14.0) kg] were measured for resting metabolic rate (RMR) and oxygen consumption (V.O-2) during the five activities using the Douglas bag method. Heart rate , respiratory frequency, CSA (Computer Science Applications) movement counts, Borg scale ratings of perceived exertion and Quetelet's index were also recorded as potential predictors of exercise intensity. Except for vacuuming in the laboratory, which was not significantly different from 3.0 METs (P=0.98), the MET means in the laboratory and home were all significantly greater than 3.0 (Pless than or equal to0.006). The sweeping and vacuuming MET means were significantly higher (P
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.
Resumo:
We report here a validated method for the quantification of a new immunosuppressant drug FTY720, using HPLC-tandem mass spectrometry. Whole blood samples (500 mu l) were subjected to liquid-liquid extraction, in the presence of an internal standard (Y-32919). Mass spectrometric detection was by selected reaction monitoring with an atmospheric pressure chemical ionization source in positive ionization mode (FTY720: m/z 308.3 -> 255.3). The assay was linear from 0.2 to 25 mu g/l (r(2) > 0.997, n = 5). The inter- and intra-day analytical recovery and imprecision for quality control samples (0.5, 7 and 15 mu g/l) were 95.8-103.2 and < 5.5%, respectively. At the lower limit of quantification (0.2 mu g/l) the interand intra-day analytical recovery was 99.0-102.8% with imprecision of < 7.6% (n = 5). The assay had a mean relative recovery of 100.5 +/- 5.8% (n = 15). Extracted samples were stable for 16 h. IFTY720 quality control samples were stable at room temperature for 16 h at 4 degrees C for at least 8 days and when taken through at least three freeze-thaw cycles. In conclusion, the method described displays analytical performance characteristics that are suitable for pharmacokinetic studies in humans. (c) 2006 Elsevier B.V. All rights reserved.