918 resultados para maximal oxygen uptake


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze the influence of previous exercise on the determination of critical power (CP). Seven apparently healthy nontrained males, of 18 to 25 years, participated of this study. The subjects were submitted, in different days to the following protocols in a cyclergometer: 1) one progressive test until voluntary exhaustion for the determination of lactate threshold (LL), maximal oxygen uptake (VO2max) and its corresponding intensity (IVO2max); 2) six constant workload tests at 95,100 and 110% IVO2max until exhaustion with and without a previous exercise at 70% , in random order. The exhaustion times (tlim) at 95, 100 and 110% IVO2max were adjusted forme thress models of two parameters to estimate CP and anaerobic work capacity (AWC) [P=CTAn/tlim)+CP; tlim = CTAn/(P-PC); P=PC.tlim+ CTAn]. The model with the lowest standard error was considered for the estimation of CP. The tlim at 95% IVO2max was similar without (501 ± 140 s) and with previous exercise (473 ± 99 s). However, the tlim at 100% (381 ± 103 s and 334 ± 101 s) and 110% IVO2max (267 ± 163 s and 227 ± 68 s) was significantly longer with previous exercise. There was no significant difference in CP and AWCat conditions without (200 ± 27 W and 23 ± 11 kJ, respectively) and with previous exercise (212 ± 30 W and 18 ± 8 kJ, respectively). It can be concluded that the parameters of the relationship between power and time were not modified by the previous severe exercise

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to investigate the effects of acute supplementation of sodium bicarbonate (NaHCO3) on maximal accumulated oxygen deficit (MAOD) determined by a single supramaximal effort (MAODALT) in running and the correlation with 200- and 400-m running performances. Fifteen healthy men (age, 23 ± 4 years; maximal oxygen uptake, 50.6 ± 6.1 mL·kg(-1)·min(-1)) underwent a maximal incremental exercise test and 2 supramaximal efforts at 110% of the intensity associated with maximal oxygen uptake, which was carried out after ingesting either 0.3 g·kg(-1) body weight NaHCO3 or a placebo (dextrose) and completing 200- and 400-m performance tests. The study design was double-blind, crossover, and placebo-controlled. Significant differences were found between the NaHCO3 and placebo conditions for MAODALT (p = 0.01) and the qualitative inference for substantial changes showed a very likely positive effect (98%). The lactic anaerobic contribution in the NaHCO3 ingestion condition was significantly higher (p < 0.01) and showed a very likely positive effect (99% chance), similar to that verified for peak blood lactate concentration (p < 0.01). No difference was found for time until exhaustion (p = 0.19) or alactic anaerobic contribution (p = 0.81). No significant correlations were observed between MAODALT and 200- and 400-m running performance tests. Therefore, we can conclude that both MAODALT and the anaerobic lactic metabolism are modified after acute NaHCO3 ingestion, but it is not correlated with running performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The purpose of the study was to investigate a possible association between the distance covered in the Hoff test with parameters of maximal oxygen uptake (V_O2MAX), anaerobic threshold, anaerobic fitness, and body composition of professional adult soccer players. Methods Twenty-five professional soccer players (20 ± 3 years) participated in the study. On different days the athletes performed: a graded incremental exercise test in a laboratory to measure V_O2MAX; a specific soccer field test called the Hoff test; a running anaerobic sprint test (RAST); an incremental test on an oval circuit to determine the velocity relative to anaerobic threshold (VAnT) and an estimation of body composition. Results The average V_O2MAX corresponded to 4.1 ± 0.1 L min-1 (54.1 ± 1.2 mL kg-1 min-1 ). The average distance covered during the Hoff test was 1,442.4 ± 30.0 m. The distance covered during the Hoff test showed significant correlations with absolute and expressed in an appropriated scale V_O2MAX (r = 0.44, p = 0.02; r = 0.42, p = 0.02, respectively) while no significant differences were found with body composition, VAnT and RAST variables. Conclusions The present study demonstrated that the distance covered during the Hoff test has weak correlation with V_O2MAX determined in treadmill running, and no correlation with VAnT, body composition and RAST outcomes, probably due to the non-specificity of the proposed tests when associated with the Hoff test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All of the adaptations acquired through physical training are reversible with inactivity. Although significant reductions in maximal oxygen uptake (VO2max) can be observed within 2 to 4 wk of detraining, the consequences of detraining on the physiology of adipose tissue are poorly known. Our aim was therefore to investigate the effects of discontinuing training (physical detraining) on the metabolism and adipocyte cellularity of rat periepididymal (PE) adipose tissue. Male Wistar rats, aged 6 wk, were divided into three groups and studied for 12 wk under the following conditions: 1) trained (T) throughout the period; 2) detrained (D), trained during the first 8 wk and detrained during the remaining 4 wk; and 3) age-matched sedentary (S). Training consisted of treadmill running sessions (1 h/day, 5 days/wk, 50–60%VO2max). The PE adipocyte size analysis revealed significant differences between the groups. The adipocyte cross-sectional area (in µm2) was significantly larger in D than in the T and S groups (3,474 ± 68.8; 1,945.7 ± 45.6; 2,492.4 ± 49.08, respectively, P < 0.05). Compared with T, the isolated adipose cells (of the D rats) showed a 48% increase in the ability to perform lipogenesis (both basal and maximally insulin-stimulated) and isoproterenol-stimulated lipolysis. No changes were observed with respect to unstimulated lipolysis. A 15% reduction in the proportion of apoptotic adipocytes was observed in groups T and D compared with group S. The gene expression levels of adiponectin and PPAR-gamma were upregulated by factors of 3 and 2 in D vs. S, respectively. PREF-1 gene expression was 3-fold higher in T vs. S. From these results, we hypothesize that adipogenesis was stimulated in group D and accompanied by significant adipocyte hypertrophy and an increase in the lipogenic capacity of the adipocytes. The occurrence of apoptotic nuclei in PE fat cells was reduced in the D and T rats; these results raise the possibility that the adipose tissue changes after detraining are obesogenic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment with recombinant human erythropoietin (rhEpo) induces a rise in blood oxygen-carrying capacity (CaO(2)) that unequivocally enhances maximal oxygen uptake (VO(2)max) during exercise in normoxia, but not when exercise is carried out in severe acute hypoxia. This implies that there should be a threshold altitude at which VO(2)max is less dependent on CaO(2). To ascertain which are the mechanisms explaining the interactions between hypoxia, CaO(2) and VO(2)max we measured systemic and leg O(2) transport and utilization during incremental exercise to exhaustion in normoxia and with different degrees of acute hypoxia in eight rhEpo-treated subjects. Following prolonged rhEpo treatment, the gain in systemic VO(2)max observed in normoxia (6-7%) persisted during mild hypoxia (8% at inspired O(2) fraction (F(I)O(2)) of 0.173) and was even larger during moderate hypoxia (14-17% at F(I)O(2) = 0.153-0.134). When hypoxia was further augmented to F(I)O(2) = 0.115, there was no rhEpo-induced enhancement of systemic VO(2)max or peak leg VO(2). The mechanism highlighted by our data is that besides its strong influence on CaO(2), rhEpo was found to enhance leg VO(2)max in normoxia through a preferential redistribution of cardiac output toward the exercising legs, whereas this advantageous effect disappeared during severe hypoxia, leaving augmented CaO(2) alone insufficient for improving peak leg O(2) delivery and VO(2). Finally, that VO(2)max was largely dependent on CaO(2) during moderate hypoxia but became abruptly CaO(2)-independent by slightly increasing the severity of hypoxia could be an indirect evidence of the appearance of central fatigue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Hypoxia-induced hyperventilation is critical to improve blood oxygenation, particularly when the arterial Po2 lies in the steep region of the O2 dissociation curve of the hemoglobin (ODC). Hyperventilation increases alveolar Po2 and, by increasing pH, left shifts the ODC, increasing arterial saturation (Sao2) 6 to 12 percentage units. Pulmonary gas exchange (PGE) is efficient at rest and, hence, the alveolar-arterial Po2 difference (Pao2-Pao2) remains close to 0 to 5mm Hg. The (Pao2-Pao2) increases with exercise duration and intensity and the level of hypoxia. During exercise in hypoxia, diffusion limitation explains most of the additional Pao2-Pao2. With altitude, acclimatization exercise (Pao2-Pao2) is reduced, but does not reach the low values observed in high altitude natives, who possess an exceptionally high DLo2. Convective O2 transport depends on arterial O2 content (Cao2), cardiac output (Q), and muscle blood flow (LBF). During whole-body exercise in severe acute hypoxia and in chronic hypoxia, peak Q and LBF are blunted, contributing to the limitation of maximal oxygen uptake (Vo2max). During small-muscle exercise in hypoxia, PGE is less perturbed, Cao2 is higher, and peak Q and LBF achieve values similar to normoxia. Although the Po2 gradient driving O2 diffusion into the muscles is reduced in hypoxia, similar levels of muscle O2 diffusion are observed during small-mass exercise in chronic hypoxia and in normoxia, indicating that humans have a functional reserve in muscle O2 diffusing capacity, which is likely utilized during exercise in hypoxia. In summary, hypoxia reduces Vo2max because it limits O2 diffusion in the lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that local muscle tissue hypoxia is an important consequence and possibly a relevant adaptive signal of endurance exercise training in humans. It has been reasoned that it might be advantageous to increase this exercise stimulus by working in hypoxia. However, as long-term exposure to severe hypoxia has been shown to be detrimental to muscle tissue, experimental protocols were developed that expose subjects to hypoxia only for the duration of the exercise session and allow recovery in normoxia (live low-train high or hypoxic training). This overview reports data from 27 controlled studies using some implementation of hypoxic training paradigms. Hypoxia exposure varied between 2300 and 5700 m and training duration ranged from 10 days to 8 weeks. A similar number of studies was carried out on untrained and on trained subjects. Muscle structural, biochemical and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available data on global estimates of performance capacity such as maximal oxygen uptake (VO2max) and maximal power output (Pmax), hypoxia as a supplement to training is not consistently found to be of advantage for performance at sea level. There is some evidence mainly from studies on untrained subjects for an advantage of hypoxic training for performance at altitude. Live low-train high may be considered when altitude acclimatization is not an option.