985 resultados para magnetic nanoparticles
Resumo:
We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report a single-step chemical synthesis of iron oxide hollow nanospheres with 9.3 nm in diameter. The sample presents a narrow particle diameter distribution and chemical homogeneity. The hollow nature of the particles is confirmed by HRTEM and HAADF STEM analysis. Electron and x-ray diffraction show that the outer material component is constituted by 2 nm ferrite crystals. Mossbauer data provide further evidence for the formation of iron oxide with high structural disorder, magnetically ordered at 4.2 K and superparamagnetism at room temperature. An unusual magnetic behavior under an applied field is reported, which can be explained by the large fraction of atoms existing at both inner and outer surfaces.
Resumo:
We propose goethite nanorods as suitable anti-ferromagnetic substrates. The great advantage of using these inorganic nanostructures as building blocks comes from the fact that it permits the design and fabrication of colloidal and supracolloidal assemblies knowing first their magnetic characteristics. As a proof of concept, we have developed mix multifunctional systems, driving on the surface of these AFM substrates, cobalt ferrite nanoparticles (the study of bimagnetic systems opens new degrees of freedom to tailor the overall properties and offers the Meiklejohn-Bean paradigm, but inverted), a silica shell (protection purposes, but also as a tailored spacer that permits controlling magnetic interactions), and metallic gold clusters (seeds that can favor the acquisition of optical or catalytic properties).
Resumo:
The aim of this work was to perform the extraction and characterization of xylan from corn cobs and prepare xylan-based microcapsules. For that purpose, an alkaline extraction of xylan was carried out followed by the polymer characterization regarding its technological properties, such as angle of repose, Hausner factor, density, compressibility and compactability. Also, a low-cost and rapid analytical procedure to identify xylan by means of infrared spectroscopy was studied. Xylan was characterized as a yellowish fine powder with low density and poor flow properties. After the extraction and characterization of the polymer, xylan-based microcapsules were prepared by means of interfacial crosslinking polymerization and their characterization was performed in order to obtain gastroresistant multiparticulate systems. This work involved the most suitable parameters of the preparation of microcapsules as well as the study of the process, scale-up methodology and biological analysis. Magnetic nanoparticles were used as a model system to be encapsulated by the xylan microcapsules. According to the results, xylan-based microcapsules were shown to be resistant to several conditions found along the gastrointestinal tract and they were able to avoid the early degradation of the magnetic nanoparticles
Resumo:
Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing watersoluble oligopeptides. At present, few reports have been described using this strategy. Therefore, the aim of this thesis was to immobilize proteases applying different methods (Immobilization by covalent bound, entrapment onto polymeric gels of PVA and immobilization on glycidil metacrylate magnetic nanoparticles) in order to produce water-soluble oligopeptides derived from lysine. Three different proteases were used: trypsin, α-chymotrypsin and bromelain. According to immobilization strategies associated to the type of protease employed, trypsin-resin systems showed the best performance in terms of hydrolytic activity and oligopeptides synthesis. Hydrolytic activities of the free and immobilized enzymes were determined spectrophotometrically based on the absorbance change at 660 nm at 25 °C (Casein method). Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by 1H-NMR analysis. Trypsin was covalently immobilized onto four different resins (Amberzyme, Eupergit C, Eupergit CM and Grace 192). Maximum yield of bound protein was 92 mg/g, 82 mg/g and 60 mg/g support for each resin respectively. The effectiveness of these systems (Trypsin-resins) was evaluated by hydrolysis of casein and synthesis of water-soluble oligolysine. Most systems were capable of catalyzing oligopeptide synthesis in aqueous medium, albeit at different efficiencies, namely: 40, 37 and 35% for Amberzyme, Eupergit C and Eupergit CM, respectively, in comparison with free enzyme. These systems produced oligomers in only 1 hour with DPavg higher than free enzyme. Among these systems, the Eupergit C-Trypsin system showed greater efficiency than others in terms of hydrolytic activity and thermal stability. However, this did not occur for oligolysine synthesis. Trypsin-Amberzyme proved to be more successful in oligopeptide synthesis, and exhibited excellent reusability, since it retained 90% of its initial hydrolytic and synthetic activity after 7 reuses. Trypsin hydrophobic interactions with Amberzyme support are responsible for protecting against strong enzyme conformational changes in the medium. In addition, the high concentration of oxirane groups on the surface promoted multi-covalent linking and, consequently, prevented the immobilized enzyme from leaching. The aforementioned results suggest that immobilized Trypsin on the supports evaluated can be efficiently used for oligopeptides synthesis in aqueous media
Resumo:
Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis and treatment of breast cancer. The bio-NCP consists of magnetic nanoparticles of Mn and Zn ferrite inside a polymeric coating (chitosan) modified with nanocrystals of apatite. The materials were characterized with synchrotron X-ray Powder Diffraction (XPD), Time-of-Flight Neutron Powder Diffraction (NPD), Fourier Transformed Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and magnetic measurement with a Physical Property Measurement System (PPMS). We obtained ferrite nanoparticles with a high inversion degree of the spinel structure regarding the Fe and Mn, but with all the Zn in the A site. The coating of such nanoparticles with chitosan had no notable effects to the ferrite microstructure. In addition, the polymeric surface can be easily modified with apatite nanocrystals since the hydration of the bio-NCP during synthesis can be controlled. The resulting bio-NCP presents a spherical shape with a narrow size distribution and high magnetic response at room temperature and is a very promising material for early diagnosis of breast cancer and its treatment. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Química - IQ
Resumo:
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (gamma-Fe2O3), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe-III atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13 +/- 4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mossbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.
Resumo:
The gastrointestinal tract is the main route of nutrients absorption and drugs delivery. Is important to know the parameters related to the tract, like gastric emptying and gastrointestinal transit, in order to better understand the behavior of different kind of meals or drugs passing through the GIT. Many techniques are used to study these parameters, such as manometry, scintigraphy, phenol red, activated charcoal and carbon-13 reading. However, these methods use radiation, are invasive and require animal sacrifice. As an alternative proposal, the Alternate Current Biosusceptometry (ACB), a magnetic technique, has proved to be effective for these studies with small animals, in a noninvasive way, low cost, radiation free and avoiding the animal death. Associating the ACB to magnetic micro or nanoparticles used as tracers, it is possible to observe the meal behavior inside of the GIT. Focusing meanly on liquid meals digestion, this paper had the objective to evaluate the efficiency of the ACB technique in gastric emptying and gastrointestinal transit evaluation of liquid meals in rats. To perform the experiments, magnetic nanoparticles (ferrite, MgFe2O4) were used on a 1,5 ml solution introduced by gavage on similar weight and age rats. The sensor made by 2 pairs of coils, capable of generating and detecting magnetic fields, creates a field on the interest place and when this field is in contact with the marked meal, it changes, resulting on a variation of the measured voltage. The voltage variation is analyzed and is obtained a particle concentration on the interest region. The results showed that is possible to apply the ACB technique on the GIT evaluation of liquid particles digestion, gastric emptying and meal cecum arrival time curves were obtained and from that, is possible to observe a pattern of gastrointestinal transit. Both mean process time values were acquired, proving the technique capability of ...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.