173 resultados para m-Xylene
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
HZSM5 zeolite was modified by exchanging proton by niobium (V). Several samples were obtained with various degrees of exchange. Pore volumes and acidity were measured to characterize these exchanged zeolites. Catalytic properties were evaluated with two reaction tests: m-xylene transformation and n-heptane cracking. The introduction of niobium on HZSM5 zeolite decreases the diffusion coefficient of 2-methyl-pentane and increases the zeolite acidity. The sample containing niobium are initially more active in cracking of n-heptane and m-xylene isomerization than HZSM5 alone.
Resumo:
O descarte indevido de resíduos industriais no solo tem causado danos ao meio ambiente e à saúde humana. A identificação e o diagnóstico de áreas contaminadas é um procedimento necessário afim de que seja possível tomar medidas de contenção da fonte poluidora e posterior remediação. As técnicas geofísicas podem auxiliar na caracterização do meio geológico, definição das dimensões da pluma de contaminação, seleção de pontos para locação de poços de monitoramento e de bombeamento. Este trabalho apresenta os resultados da aplicação do método Eletromagnético Indutivo em uma área industrial contaminada por benzeno, tolueno, xileno (BTX) e dicloroetano. Os resultados indicam dois padrões de migração dos contaminantes em subsuperfície. Uma tendência de migração no plano horizontal até o nível de 15 m de profundidade e uma tendência de migração no plano vertical entre 15 e 60 m de profundidade. As tendências de migração divergentes estão condicionadas a densidade dos compostos que constituem a pluma de contaminação, ou seja, um intervalo LNAPL sobrenadante (BTX), sobreposto a um intervalo DNAPL (1,2 dicloroetano).
Aplicação do método eletromagnético indutivo (EM) no monitoramento de contaminantes em subsuperfície
Resumo:
O uso combinado de poços de amostragem e técnicas geofísicas constitui a maneira mais adequada para identificação e o monitoramento de áreas contaminadas. Este procedimento permite a locação de poços de amostragem e de monitoramento em pontos estratégicos, otimizando resultados e minimizando gastos. O método geofísico Eletromagnético Indutivo (EM) apresenta amplas possibilidades de aplicação em estudos ambientais devido à facilidade na aquisição de dados, versatilidade do equipamento em campo e a possibilidade de varredura de grandes áreas num curto espaço de tempo. Este trabalho realiza uma análise comparativa de dados em obtidos no ano de 1992 e em 2003. O local estudado é uma área industrial que apresenta contaminação do solo e água subterrânea por Benzeno, Tolueno, Xileno, 1,2 dicloroetano, Sódio e Cloreto, produto da infiltração de efluentes químicos diretamente do solo. Os resultados indicam uma acentuada atenuação da pluma contaminante, com provável redução no grau de contaminação. Os compostos de fase leve (LNAPLs) apresentaram maior tendência de migração horizontal, concomitante ao movimento da água subterrânea. Os compostos de fase densa (DNAPLs) apresentaram uma tendência mais acentuada de migração no sentido vertical, possivelmente devido à ausência de superfícies impermeáveis. Os compostos inorgânicos acompanharam o fluxo dos compostos de fase líquida não aquosa (NAPLs), o que por sua vez permitiu a caracterização da pluma de contaminação como um corpo condutivo em relação às áreas adjacentes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Branched polyethylene/high-density polyethylene blends (BPE/HDPE) with a wide range of molecular weights, melt flow indexes (MFI), and intrinsic viscosity were prepared using the homogeneous binary catalyst system composed by Ni(alpha-diimine)Cl-2 (1) (alpha-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {Tp(Ms*)} TiCl3 (2) (Tp(Ms*)=hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) activated with MAO and/or TIBA in hexane at two different polymerization temperatures (30 and 55 degreesC) and by varying the nickel loading molar fraction (x(Ni)). At all Temperatures, a non-linear correlation between the x(Ni) and the productivity was observed, suggesting the occurrence of a synergistic effect between the nickel and the titanium catalyst precursors, which is more pronounced at 55 degreesC. The molecular weight of the BPE/HDPE blends considerably decreases with increasing Al/M molar ratio. The melt flow indexes (MFI) and intrinsic viscosities (eta) are strongly affected by x(Ni), but the melting temperatures are nearly constant, 132 +/- 3 degreesC. Dynamic mechanical thermal analysis (DMTA) shows the formation of different polymeric materials where the stiffness vanes according, to the x(Ni) and temperature used in the polymerization reaction. The surface morphology of the BPE/HDPE blends studied by scanning electron microscopy (SEM) revealed a low miscibility between the PE phases resulting in the formation of a sandwich structure after etching with o-xylene.
Resumo:
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (
Resumo:
The aim of this study was to evaluate the effectiveness of 3 solvents (eucalyptol, orange oil, and xylol) on 2 types of gutta-percha (conventional and thermoplastic) and Resilon. Specimens (10 mm diameter × 1 mm thick; n=7 per condition) were prepared and maintained at 37°C for 48 h. Each specimen was weighed on a precision scale every 24 h until its mass was stable, at which time the initial mass was determined. Specimens (n=7) were then immersed in the solvent solutions and, after 48 h at 37°C, they were reweighed at 24- h intervals, until stabilization (final mass). The difference between the final and the initial mass determined the solvent capacity of each solvent. Data were subjected to analysis of variance and Tukey's test at 5% significance level. The results demonstrated that xylol was the most effective, especially on conventional gutta-percha and Resilon (p<0.05). Eucalyptol and orange oil were more effective on thermoplastic gutta-percha than the other materials (p<0.05). It was concluded that all evaluated substances presented solvent action, but xylol was the most effective on both gutta-percha or Resilon.
Resumo:
Black yeast members of the Herpotrichiellaceae present a complex ecological behavior: They are often isolated from rather extreme environments polluted with aromatic hydrocarbons, while they are also regularly involved in human opportunistic infections. A selective technique to promote the in vitro growth of herpotrichiellaceous fungi was applied to investigate their ecophysiology. Samples from natural ecological niches and man-made environments that might contain black yeasts were enriched on an inert solid support at low humidity and under a controlled atmosphere rich in volatile aromatic hydrocarbons. Benzene, toluene, and xylene were provided separately as the sole carbon and energy source via the gas phase. The assayed isolation protocol was highly specific toward mesophilic Exophiala species (70 strains of this genus out of 71 isolates). Those were obtained predominantly from creosote-treated railway ties (53 strains), but isolates were also found on wild berries (11 strains) and in guano-rich soil samples (six strains). Most of the isolates were obtained on toluene (43 strains), but enrichments on xylene and benzene also yielded herpotrichiellaceous fungi (17 and 10 isolates, respectively). Based upon morphological characterizations and DNA sequences of the full internal transcriber spacers (ITS) and the 8.5S rRNA genes, the majority of the obtained isolates were affiliated to the recently described species Exophiala xenobiotica (32 strains) and Exophiala bergeri (nine strains). Members of two other phylogenetic groups (24 and two strains, respectively) somewhat related to E. bergeri were also found, and a last group (three strains) corresponded to an undescribed Exophiala species. © 2010 The Author(s).
Resumo:
Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F 1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10 -4M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F 1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. © 2011 Elsevier Ltd.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geologia Regional - IGCE