975 resultados para määrä
Resumo:
PURPOSE: To evaluate the influence of shorter- and longer-acting intra-articular anaesthetics on post-arthrographic pain. MATERIALS AND METHODS: 154 consecutive patients investigated by MR or CT arthrographies were randomly assigned to one of the following groups: 1--intra-articular contrast injection only; 2--lidocain 1% adjunction; or 3--bupivacain 0.25% adjunction. Pain was assessed before injection, at 15 min, 4 h, 1 day and 1 week after injection by visual analogue scale (VAS). RESULTS: At 15 min, early mean pain score increased by 0.96, 0.24 and 0 in groups 1, 2 and 3, respectively. Differences between groups 1 & 3 and 1 & 2 were statistically significant (p=0.003 and 0.03, respectively), but not between groups 2 & 3 (p=0.54). Delayed mean pain score increase was maximal at 4 h, reaching 1.60, 1.22 and 0.29 in groups 1, 2 and 3, respectively. Differences between groups 1 & 2 and 2 & 3 were statistically significant (p=0.002 and 0.02, respectively), but not between groups 1 & 2 (p=0.46). At 24 h and 1 week, the interaction of local anaesthetics with increase in pain score was no longer significant. Results were independent of age, gender and baseline VAS. CONCLUSION: Intra-articular anaesthesia may significantly reduce post-arthrographic pain. Bupivacain seems to be more effective than lidocain to reduce both early and delayed pain.
Resumo:
We propose a method for brain atlas deformation inpresence of large space-occupying tumors, based on an apriori model of lesion growth that assumes radialexpansion of the lesion from its starting point. First,an affine registration brings the atlas and the patientinto global correspondence. Then, the seeding of asynthetic tumor into the brain atlas provides a templatefor the lesion. Finally, the seeded atlas is deformed,combining a method derived from optical flow principlesand a model of lesion growth (MLG). Results show that themethod can be applied to the automatic segmentation ofstructures and substructures in brains with grossdeformation, with important medical applications inneurosurgery, radiosurgery and radiotherapy.
Resumo:
Échelle(s) : 1:5 000, Echelle de 1 à 5,000
Resumo:
Échelle(s) : 1:2 500
Resumo:
To enhance the clinical value of coronary magnetic resonance angiography (MRA), high-relaxivity contrast agents have recently been used at 3T. Here we examine a uniform bilateral shadowing artifact observed along the coronary arteries in MRA images collected using such a contrast agent. Simulations were performed to characterize this artifact, including its origin, to determine how best to mitigate this effect, and to optimize a data acquisition/injection scheme. An intraluminal contrast agent concentration model was used to simulate various acquisition strategies with two profile orders for a slow-infusion of a high-relaxivity contrast agent. Filtering effects from temporally variable weighting in k-space are prominent when a centric, radial (CR) profile order is applied during contrast infusion, resulting in decreased signal enhancement and underestimation of vessel width, while both pre- and postinfusion steady-state acquisitions result in overestimation of the vessel width. Acquisition during the brief postinfusion steady-state produces the greatest signal enhancement and minimizes k-space filtering artifacts.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
Échelle(s) : [1:2 900 000 environ], Echelle, Stades grecs a 600 au D. [600 = 3,8 cm]