900 resultados para low-resolution NMR
Resumo:
Socioeconomic considerations should have an important place in reserve design, Systematic reserve-selection tools allow simultaneous optimization for ecological objectives while minimizing costs but are seldom used to incorporate socioeconomic costs in the reserve-design process. The sensitivity of this process to biodiversity data resolution has been studied widely but the issue of socioeconomic data resolution has not previously been considered. We therefore designed marine reserves for biodiversity conservation with the constraint of minimizing commercial fishing revenue losses and investigated how economic data resolution affected the results. Incorporating coarse-resolution economic data from official statistics generated reserves that were only marginally less costly to the fishery than those designed with no attempt to minimize economic impacts. An intensive survey yielded fine-resolution data that, when incorporated in the design process, substantially reduced predicted fishery losses. Such an approach could help minimize fisher displacement because the least profitable grounds are selected for the reserve. Other work has shown that low-resolution biodiversity data can lead to underestimation of the conservation value of some sites, and a risk of overlooking the most valuable areas, and we have similarly shown that low-resolution economic data can cause underestimation of the profitability of some sites and a risk of inadvertently including these in the reserve. Detailed socioeconomic data are therefore an essential input for the design of cost-effective reserve networks.
Resumo:
A novel wavelength-division-multiplexed in-fibre Bragg grating sensor system combined with high resolution drift-compensated interferometric wavelength-shift detection is described. This crosstalk-free system is based on the use of an interferometric wavelength scanner and a low resolution spectrometer. A four element system is demonstrated for temperature measurement, and a resolution of ±0.1°C has been achieved.
Resumo:
Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.
Resumo:
A novel wavelength-division-multiplexed in-fibre Bragg grating sensor system combined with high resolution drift-compensated interferometric wavelength-shift detection is described. This crosstalk-free system is based on the use of an interferometric wavelength scanner and a low resolution spectrometer. A four element system is demonstrated for temperature measurement, and a resolution of ±0.1°C has been achieved.
Resumo:
Sea ice leads play an essential role in ocean-ice-atmosphere exchange, in ocean circulation, geochemistry, and in ice dynamics. Their precise detection is crucial for altimetric estimations of sea ice thickness and volume. This study evaluates the performance of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) altimeter to detect leads and to monitor their spatio-temporal dynamics. We show that a pulse peakiness parameter (PP) used to detect leads by Envisat RA-2 and ERS-1,-2 altimeters is not suitable because of saturation of AltiKa return echoes over the leads. The signal saturation results in loss of 6-10% of PP data over sea ice. We propose a different parameter-maximal power of waveform-and define the threshold to discriminate the leads. Our algorithm can be applied from December until May. It detects well the leads of small and medium size from 200 m to 3-4 km. So the combination of the high-resolution altimetric estimates with low-resolution thermal infra-red or radiometric lead fraction products could enhance the capability of remote sensing to monitor sea ice fracturing.
Resumo:
Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No.15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analysed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterised toxins.
Resumo:
The relationship between multiple cameras viewing the same scene may be discovered automatically by finding corresponding points in the two views and then solving for the camera geometry. In camera networks with sparsely placed cameras, low resolution cameras or in scenes with few distinguishable features it may be difficult to find a sufficient number of reliable correspondences from which to compute geometry. This paper presents a method for extracting a larger number of correspondences from an initial set of putative correspondences without any knowledge of the scene or camera geometry. The method may be used to increase the number of correspondences and make geometry computations possible in cases where existing methods have produced insufficient correspondences.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the Autonomous Tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
Objective Laser Doppler imaging (LDI) was compared to wound outcomes in children's burns, to determine if the technology could be used to predict these outcomes. Methods Forty-eight patients with a total of 85 burns were included in the study. Patient median age was 4 years 10 months and scans were taken 0–186 h post-burn using the fast, low-resolution setting on the Moor LDI2 laser Doppler imager. Wounds were managed by standard practice, without taking into account the scan results. Time until complete re-epithelialisation and whether or not grafting and scar management were required were recorded for each wound. If wounds were treated with Silvazine™ or Acticoat™ prior to the scan, this was also recorded. Results The predominant colour of the scan was found to be significantly related to the re-epithelialisation, grafting and scar management outcomes and could be used to predict those outcomes. The prior use of Acticoat™ did not affect the scan relationship to outcomes, however, the use of Silvazine™ did complicate the relationship for light blue and green scanned partial thickness wounds. Scans taken within the 24-h window after-burn also appeared to be accurate predictors of wound outcome. Conclusion Laser Doppler imaging is accurate and effective in a paediatric population with a low-resolution fast-scan.
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.