826 resultados para longitudinal Poisson data
Resumo:
A main assumption of social production function theory is that status is a major determinant of subjective well-being (SWB). From the perspective of the dissociative hypothesis, however, upward social mobility may be linked to identity problems, distress, and reduced levels of SWB because upwardly mobile people lose their ties to their class of origin. In this paper, we examine whether or not one of these arguments holds. We employ the United Kingdom and Switzerland as case studies because both are linked to distinct notions regarding social inequality and upward mobility. Longitudinal multilevel analyses based on panel data (UK: BHPS, Switzerland: SHP) allow us to reconstruct individual trajectories of life satisfaction (as a cognitive component of SWB) along with events of intragenerational and intergenerational upward mobility—taking into account previous levels of life satisfaction, dynamic class membership, and well-studied determinants of SWB. Our results show some evidence for effects of social class and social mobility on well-being in the UK sample, while there are no such effects in the Swiss sample. The UK findings support the idea of dissociative effects in terms of a negative effect of intergenerational upward mobility on SWB.
Resumo:
The joint modeling of longitudinal and survival data is a new approach to many applications such as HIV, cancer vaccine trials and quality of life studies. There are recent developments of the methodologies with respect to each of the components of the joint model as well as statistical processes that link them together. Among these, second order polynomial random effect models and linear mixed effects models are the most commonly used for the longitudinal trajectory function. In this study, we first relax the parametric constraints for polynomial random effect models by using Dirichlet process priors, then three longitudinal markers rather than only one marker are considered in one joint model. Second, we use a linear mixed effect model for the longitudinal process in a joint model analyzing the three markers. In this research these methods were applied to the Primary Biliary Cirrhosis sequential data, which were collected from a clinical trial of primary biliary cirrhosis (PBC) of the liver. This trial was conducted between 1974 and 1984 at the Mayo Clinic. The effects of three longitudinal markers (1) Total Serum Bilirubin, (2) Serum Albumin and (3) Serum Glutamic-Oxaloacetic transaminase (SGOT) on patients' survival were investigated. Proportion of treatment effect will also be studied using the proposed joint modeling approaches. ^ Based on the results, we conclude that the proposed modeling approaches yield better fit to the data and give less biased parameter estimates for these trajectory functions than previous methods. Model fit is also improved after considering three longitudinal markers instead of one marker only. The results from analysis of proportion of treatment effects from these joint models indicate same conclusion as that from the final model of Fleming and Harrington (1991), which is Bilirubin and Albumin together has stronger impact in predicting patients' survival and as a surrogate endpoints for treatment. ^
Resumo:
The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^
Dimensions and determinants of upward mobility : a study based on longitudinal data from Delhi slums
Resumo:
This study based on two primary surveys of the same households in two different years (2007/08 and 2012) assesses the extent of inter-temporal change in income of the individual workers and makes an attempt to identify the factors which explain upward mobility in alternate econometric framework, envisaging endogeneity problem. It also encompasses a host of indicators of wellbeing and constructs the transition matrix to capture the extent of change over time at the household level. The findings are indicative of a rise in the income of workers across a sizeable percentage of households though many of them remained below the poverty line notwithstanding this increase. In fact, there is a wide spread deterioration in the wellbeing index constructed at the household level. Among several determinants of income rise two important policy prescriptions can be elicited. Inadequate education reduces the probability of upward mobility while education above a threshold level raises it. Savings are crucial for upward mobility impinging on the importance of asset creation. Views that entail neighbourhood spill-over effects also received validation. Besides, investment in housing and basic amenities turns out to be crucial for improvement in wellbeing levels.
Resumo:
Objective: To document the course of psychological symptomology, mental health treatment, and unmet psychological needs using caregiver reports in the first 18 months following pediatric brain injury (BI). Method: Participants included 28 children (aged 1-18 years) who were hospitalized at a children's hospital's rehabilitation unit. Caregiver reports of children's psychological symptoms, receipt of mental health treatment, and unmet psychological needs were assessed at one month, six months, 12 months, and 18 months post-BI. Results: Caregivers reported a general increase in psychological symptoms and receipt of mental health treatment over the 18 months following BI; however, there was a substantial gap between the high rate of reported symptoms and low rate of reported treatment. Across all four follow-up time points there were substantial unmet psychological needs (at least 60% of sample). Conclusions: Findings suggest that there are substantial unmet psychological needs among children during the first 18 months after BI. Barriers to mental health treatment for this population need to be addressed.
Resumo:
"May 1992."
Resumo:
Mode of access: Internet.
Resumo:
The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.
Resumo:
Funded by Chief Scientist Office, Scotland. Grant Number: CZH/4/394 Economic and Social Research Council grant as part of the National Centre for Research Methods. Grant Number: RES-576-25-0032
Resumo:
The paper exploits the unique strengths of Statistics Canada's Longitudinal Administrative Database ("LAD"), constructed from individuals' tax records, to shed new light on the extent and nature of the emigration of Canadians to other countries and their patterns of return over the period 1982-1999. The empirical evidence begins with some simple graphs of the overall rates of leaving over time, and follows with the presentation of the estimation results of a model that essentially addresses the question: "who moves?" The paper then analyses the rates of return for those observed to leave the country - something for which there is virtually no existing evidence. Simple return rates are reported first, followed by the results of a hazard model of the probability of returning which takes into account individuals' characteristics and the number of years they have already been out of the country. Taken together, these results provide a new empirical basis for discussions of emigration in general, and the brain drain in particular. Of particular interest are the ebb and flow of emigration rates observed over the last two decades, including a perhaps surprising turndown in the most recent years after climbing through the earlier part of the 1990s; the data on the number who return after leaving, the associated patterns by income level, and the increases observed over the last decade.
Resumo:
Robust joint modelling is an emerging field of research. Through the advancements in electronic patient healthcare records, the popularly of joint modelling approaches has grown rapidly in recent years providing simultaneous analysis of longitudinal and survival data. This research advances previous work through the development of a novel robust joint modelling methodology for one of the most common types of standard joint models, that which links a linear mixed model with a Cox proportional hazards model. Through t-distributional assumptions, longitudinal outliers are accommodated with their detrimental impact being down weighed and thus providing more efficient and reliable estimates. The robust joint modelling technique and its major benefits are showcased through the analysis of Northern Irish end stage renal disease patients. With an ageing population and growing prevalence of chronic kidney disease within the United Kingdom, there is a pressing demand to investigate the detrimental relationship between the changing haemoglobin levels of haemodialysis patients and their survival. As outliers within the NI renal data were found to have significantly worse survival, identification of outlying individuals through robust joint modelling may aid nephrologists to improve patient's survival. A simulation study was also undertaken to explore the difference between robust and standard joint models in the presence of increasing proportions and extremity of longitudinal outliers. More efficient and reliable estimates were obtained by robust joint models with increasing contrast between the robust and standard joint models when a greater proportion of more extreme outliers are present. Through illustration of the gains in efficiency and reliability of parameters when outliers exist, the potential of robust joint modelling is evident. The research presented in this thesis highlights the benefits and stresses the need to utilise a more robust approach to joint modelling in the presence of longitudinal outliers.