719 resultados para long-period grating
Resumo:
The spatial variation of chromospheric oscillations in network bright points (NBPs) is studied using high-resolution observations in Ca II K3. Light curves and hence power spectra were created by isolating distinct regions of the NBP via a simple intensity thresholding technique. Using this technique, it was possible to identify peaks in the power spectra with particular spatial positions within the NBPs. In particular, long-period waves with periods of 4-15 minutes (1-4 mHz) were found in the central portions of each NBP, indicating that these waves are certainly not acoustic but possibly due to magnetoacoustic or magnetogravity wave modes. We also show that spatially averaged or low spatial resolution power spectra can lead to an inability to detect such long-period waves.
Resumo:
We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s-1 would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.
Resumo:
Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.
Resumo:
Ground magnetic field perturbations recorded by the CANOPUS magnetometer network in the 7 to 13 MLT sector are used to examine how reconfigurations of the dayside polar ionospheric flow take place in response to north-south changes of the IMF. During the 6-hour interval in question IMF Bz oscillates between ±7 nT with about a 1-hour period. Corresponding variations in the ground magnetic disturbance are observed which we infer are due to changes in ionospheric flow. Cross correlation of the data obtained from two ground stations at 73.5° magnetic latitude, but separated by ∼2 hours in MLT, shows that changes in the flow are initiated in the prenoon sector (∼10 MLT) and then spread outward toward dawn and dusk with a phase speed of ∼5 km s−1 over the longitude range ∼8 to 12 MLT, slowing to ∼2 km s−1 outside this range. Cross correlating the data from these ground stations with IMP 8 IMF Bz records produces a MLT variation in the ground response delay relative to the IMF which is compatible with these deduced phase speeds. We interpret these observations in terms of the ionospheric response to the onset, expansion and decay of magnetic reconnection at the dayside magnetopause.
Resumo:
Técnicas de otimização numérica são úteis na solução de problemas de determinação da melhor entrada para sistemas descritos por modelos matemáticos e cujos objetivos podem ser expressos de uma maneira quantitativa. Este trabalho aborda o problema de otimizar as dosagens dos medicamentos no tratamento da AIDS em termos de um balanço entre a resposta terapêutica e os efeitos colaterais. Um modelo matemático para descrever a dinâmica do vírus HIV e células CD4 é utilizado para calcular a dosagem ótima do medicamento no tratamento a curto prazo de pacientes com AIDS por um método de otimização direta utilizando uma função custo do tipo Bolza. Os parâmetros do modelo foram ajustados com dados reais obtidos da literatura. Com o objetivo de simplificar os procedimentos numéricos, a lei de controle foi expressa em termos de uma expansão em séries que, após truncamento, permite obter controles sub-ótimos. Quando os pacientes atingem um estado clínico satisfatório, a técnica do Regulador Linear Quadrático (RLQ) é utilizada para determinar a dosagem permanente de longo período para os medicamentos. As dosagens calculadas utilizando a técnica RLQ , tendem a ser menores do que a equivalente terapia de dose constante em termos do expressivo aumento na contagem das células T+ CD4 e da redução da densidade de vírus livre durante um intervalo fixo de tempo.
Resumo:
Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5 hPa) and upper mesosphere (0.02 hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from measurements of tracers, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, mid and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20–40 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis model data revealed remarkably good agreement below 0.3 hPa but discrepancies above.
Resumo:
We describe radial-velocity time series obtained by HARPS on the 3.60 m telescope in La Silla (ESO, Chile) over ten years and report the discovery of five new giant exoplanets in distant orbits; these new planets orbit the stars HD 564, HD 30669, HD 108341, and BD -114672. Their periods range from 492 to 1684 days, semi-major axes range from 1.2 to 2.69 AU, and eccentricities range from 0 to 0.85. Their minimum mass ranges from 0.33 to 3.5 MJup. We also refine the parameters of two planets announced previously around HD 113538, based on a longer series of measurements. The planets have a period of 663 ± 8 and 1818 ± 25 days, orbital eccentricities of 0.14 ± 0.08 and 0.20 ± 0.04, and minimum masses of 0.36 ± 0.04 and 0.93 ± 0.06 MJup. Finally, we report the discovery of a new hot-Jupiter planet around an active star, HD 103720; the planet has a period of 4.5557 ± 0.0001 days and a minimum mass of 0.62 ± 0.025 MJup. We discuss the fundamental parameters of these systems and limitations due to stellar activity in quiet stars with typical 2 m s-1 radial velocity precision.
Resumo:
Typescript.
Resumo:
Mode of access: Internet.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm·m for curvature and 2.2×10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.
Resumo:
This paper compares the environmental sensing behaviour of long period gratings written in three fibers with different refractive index profiles: step, W and a progressive three layered fiber. The measurands considered are temperature, refractive index, axial strain and bending, and the spectral behaviour of individual attenuation bands were observed and, where possible, compared to theoretical predictions. Significant differences in the behaviour of the three fiber types were found.