887 resultados para logiche modali, logiche independence friendly, quantificatori parzialmente ordinati.
Resumo:
Looking for a target in a visual scene becomes more difficult as the number of stimuli increases. In a signal detection theory view, this is due to the cumulative effect of noise in the encoding of the distractors, and potentially on top of that, to an increase of the noise (i.e., a decrease of precision) per stimulus with set size, reflecting divided attention. It has long been argued that human visual search behavior can be accounted for by the first factor alone. While such an account seems to be adequate for search tasks in which all distractors have the same, known feature value (i.e., are maximally predictable), we recently found a clear effect of set size on encoding precision when distractors are drawn from a uniform distribution (i.e., when they are maximally unpredictable). Here we interpolate between these two extreme cases to examine which of both conclusions holds more generally as distractor statistics are varied. In one experiment, we vary the level of distractor heterogeneity; in another we dissociate distractor homogeneity from predictability. In all conditions in both experiments, we found a strong decrease of precision with increasing set size, suggesting that precision being independent of set size is the exception rather than the rule.
Resumo:
Concrete is the most widely used construction material. At the same time, however, the concrete industry is a major CO2 emitter thus contributing towards global warming. While enhanced efficiency in the production of concrete is not likely to dramatically reduce the CO2 emissions, cement replacement by a supplementary material or mineral additive, such as silica fume, which is not associated with CO2 emission, can substantially reduce the aforementioned problem. The present work discusses the benefits of incorporating mineral additives in concrete and shows that these additives can improve both the mechanical and physical properties of the end-product, and hence its durability, albeit with a reduction in cement content. © 2009 WIT Press.
Resumo:
Slow-light effects in photonic crystal (PC) waveguides can enhance light-mater interaction near the photonic band edge, which can be used to design a short cavity length semiconductor optical amplifier (SOA). In this paper, a novel SOA based on slow-light effects in PC waveguides (PCSOA) is presented. To realize the amplification of the optical signal with polarization independence, a PCSOA is designed with a compensated structure. The cascaded structure leads to a balanced amplification to the TE and TM polarized light.
Resumo:
We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that not contain expensive or toxic elements, or do not need a mercury vapor plasma source. In this paper, BPO4 and Li+-doped BPO4 powder samples were prepared by the Pechini-type sol-gel (PSG) process. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that PSG -derived Li+-doped BPO4 annealed at 960 degrees C exhibited bright bluish-white emission centered at 416 nm. The luminescence decay curves analysis indicates that each sample has two kinds of lifetimes (5.9 ns and 0.529 ms) and two types of kinetic decay behaviors which can be fitted into a single-exponential function and a double-exponential function, respectively.
Resumo:
In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.
Resumo:
A series of acrylic impact modifiers (AIMS) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle-ductile transition of impact-modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 degrees C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle-ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2-341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle-ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle-ductile transition for the PVC/AIM blends.
Resumo:
Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.
Resumo:
Relatório apresentado à Universidade Fernando Pessoa como parte dos requisitos para cumprimento do programa de pós-doutoramento em Ciências da Comunicação, vertente Jornalismo
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in flexible congestion control mechanisms. Window-based congestion control schemes use increase rules to probe available bandwidth, and decrease rules to back off when congestion is detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and packet loss rate. In this paper, we propose a novel window-based congestion control algorithm called SIMD (Square-Increase/Multiplicative-Decrease). Contrary to previous memory-less controls, SIMD utilizes history information in its control rules. It uses multiplicative decrease but the increase in window size is in proportion to the square of the time elapsed since the detection of the last loss event. Thus, SIMD can efficiently probe available bandwidth. Nevertheless, SIMD is TCP-friendly as well as TCP-compatible under RED, and it has much better convergence behavior than TCP-friendly AIMD and binomial algorithms proposed recently.
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. In this paper, we define a new spectrum of window-based congestion control algorithms that are TCP-friendly as well as TCP-compatible under RED. Contrary to previous memory-less controls, our algorithms utilize history information in their control rules. Our proposed algorithms have two salient features: (1) They enable a wider region of TCP-friendliness, and thus more flexibility in trading off among smoothness, aggressiveness, and responsiveness; and (2) they ensure a faster convergence to fairness under a wide range of system conditions. We demonstrate analytically and through extensive ns simulations the steady-state and transient behaviors of several instances of this new spectrum of algorithms. In particular, SIMD is one instance in which the congestion window is increased super-linearly with time since the detection of the last loss. Compared to recently proposed TCP-friendly AIMD and binomial algorithms, we demonstrate the superiority of SIMD in: (1) adapting to sudden increases in available bandwidth, while maintaining competitive smoothness and responsiveness; and (2) rapidly converging to fairness and efficiency.