940 resultados para linear approximation method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When a bolted joint is loaded in tension with dynamically, part of this load is absorbed by the bolt and rest is absorbed by the joint material. What determines the portion that is to absorbed by the bolt is the joint stiffness factor. This factor influences the tension which corresponds to pre-load and the safety factor for fatigue failure, thus being an important factor in the design of bolted joints. In this work, three methods of calculating the stiffness factor are compared through a spreadsheet in Excel software. The ratio of initial pre-load and the safety factor for fatigue failure depending on the stiffness factor graph is generated. The calculations for each method show results with a small difference. It is therefore recommended that each project case is analyzed, and depending on its conditions and the range of stiffness values, the more or less rigid method about the safety factor for fatigue failure is chosen. In general, the approximation method provides consistent results and can be easily calculated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of geographic information systems (GIS), combined with advanced analysis technique, enables the standardization and data integration, which are usually from different sources, allowing you to conduct a joint evaluation of the same, providing more efficiency and reliability in the decision-making process to promote the adequacy of land use. This study aimed to analyze the priority areas of the basin agricultural use of the Capivara River, Botucatu, SP, through multicriterial analysis, aiming at conservation of water resources. The results showed that the Geographic Information System Idrisi Selva combined with advanced analysis technique and the weighted linear combination method proved to be an effective tool in the combination of different criteria, allowing the determination of the adequacy of agricultural land use less subjective way. Environmental criteria were shown to be suitable for the combination and multi-criteria analysis, allowing the preparation of the statement of suitability classes for agricultural use and can be useful for regional planning and decision-making by public bodies and environmental agents because the method takes into account the rational use of land and allowing the conservation of hydrics resources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time evolution of a large number of initially anisotropic states as determined, on the one hand, by the full nonlinear Einstein's equations and, on the other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20% accuracy the isotropization time, which is of the order of t(iso) less than or similar to 1/T, with T the final equilibrium temperature. We comment on possible extensions to less symmetric situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The responses of photosynthetic plant gas exchange, COS uptake and carbonic anhydrase (CA) activity were studied on Quercus ilex (Holm oak), and beech Fagus sylvatica L

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During my PhD, starting from the original formulations proposed by Bertrand et al., 2000 and Emolo & Zollo 2005, I developed inversion methods and applied then at different earthquakes. In particular large efforts have been devoted to the study of the model resolution and to the estimation of the model parameter errors. To study the source kinematic characteristics of the Christchurch earthquake we performed a joint inversion of strong-motion, GPS and InSAR data using a non-linear inversion method. Considering the complexity highlighted by superficial deformation data, we adopted a fault model consisting of two partially overlapping segments, with dimensions 15x11 and 7x7 km2, having different faulting styles. This two-fault model allows to better reconstruct the complex shape of the superficial deformation data. The total seismic moment resulting from the joint inversion is 3.0x1025 dyne.cm (Mw = 6.2) with an average rupture velocity of 2.0 km/s. Errors associated with the kinematic model have been estimated of around 20-30 %. The 2009 Aquila sequence was characterized by an intense aftershocks sequence that lasted several months. In this study we applied an inversion method that assumes as data the apparent Source Time Functions (aSTFs), to a Mw 4.0 aftershock of the Aquila sequence. The estimation of aSTFs was obtained using the deconvolution method proposed by Vallée et al., 2004. The inversion results show a heterogeneous slip distribution, characterized by two main slip patches located NW of the hypocenter, and a variable rupture velocity distribution (mean value of 2.5 km/s), showing a rupture front acceleration in between the two high slip zones. Errors of about 20% characterize the final estimated parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the detection of hidden objects by low-frequency electromagnetic imaging the Linear Sampling Method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfills the assumptions for the fully justified variant of the Linear Sampling Method, the so-called Factorization Method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can be expected for the case of conducting objects and layered backgrounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a new type of filter approximation method and call it the Pascal filter, which we construct from the Pascal polynomials. The roll-off characteristics of the Pascal, Butterworth, and the Chebyshev filters are compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43–68 %) to rely on water in the topsoil (0–10 cm), whereas control plants relied less on the topsoil (4–37 %) and shifted to deeper soil layers (20–35 cm) during the drought period (29–48 %). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La mineralogía de procesos se ha convertido en los últimos años en una herramienta indispensable dentro del ámbito minero-metalúrgico debido fundamentalmente a la emergencia de la Geometalurgia. Esta disciplina en auge, a través de la integración de datos geológicos, mineros y metalúrgicos, proporciona la información necesaria para que el circuito de concentración mineral pueda responder de manera rápida y eficaz a la variabilidad mineralógica inherente a la geología del yacimiento. Para la generación del modelo geometalúrgico, la mineralogía de procesos debe aportar datos cuantitativos sobre los rasgos mineralógicos influyentes en el comportamiento de los minerales y para ello se apoya en el uso de sistemas de análisis mineralógico automatizado. Estos sistemas son capaces de proporcionar gran cantidad de datos mineralógicos de manera rápida y precisa. Sin embargo, cuando se trata de la caracterización de la textura, el mineralogista debe recurrir a descripciones cualitativas basadas en la observación, ya que los sistemas actuales no ofrecen información textural automatizada. Esta tesis doctoral surge precisamente para proporcionar de manera sistemática información textural relevante para los procesos de concentración mineral. La tesis tiene como objetivo principal la identificación y caracterización del tipo de intercrecimiento que un determinado mineral presenta en las partículas minerales, e inicialmente se han tenido en cuenta los siete tipos de intercrecimiento considerados como los más relevantes bajo el punto de vista del comportamiento de las partículas minerales durante flotación, lixiviación y molienda. Para alcanzar este objetivo se ha desarrollado una metodología basada en el diseño y cálculo de una serie de índices numéricos, a los que se ha llamado índices mineralúrgicos, que cumplen una doble función: por un lado, cada índice aporta información relevante para caracterizar los principales rasgos mineralógicos que gobiernan el comportamiento de las partículas minerales a lo largo de los procesos de concentración y por otro lado, estos índices sirven como variables discriminantes para identificar el tipo de intercrecimiento mineral mediante la aplicación de Análisis Discriminante. Dentro del conjunto de índices propuestos en este trabajo, se han considerado algunos índices propuestos por otros autores para su aplicación tanto en el ámbito de la mineralogía como en otros ámbitos de la ciencia de materiales. Se trata del Índice de Contigüidad (Gurland, 1958), Índice de Intercrecimiento (Amstutz y Giger, 1972) e Índice de Coordinación (Jeulin, 1981), adaptados en este caso para el análisis de partículas minerales. El diseño de los índices se ha basado en los principios básicos de la Estereología y el análisis digital de imagen, y su cálculo se ha llevado a cabo aplicando el método de interceptos lineales mediante la programación en MATLAB de varias rutinas. Este método estereológico permite recoger una serie de medidas a partir de las que es posible calcular varios parámetros, tanto estereológicos como geométricos, que han servido de base para calcular los índices mineralúrgicos. Para evaluar la capacidad discriminatoria de los índices mineralúrgicos se han seleccionado 200 casos en los que se puede reconocer de manera clara alguno de los siete tipos de intercrecimiento considerados inicialmente en este trabajo. Para cada uno de estos casos se han calculado los índices mineralúrgicos y se ha aplicado Análisis Discriminante, obteniendo un porcentaje de acierto en la clasificación del 95%. Esta cifra indica que los índices propuestos son discriminadores fiables del tipo de intercrecimiento. Una vez probada la capacidad discriminatoria de los índices, la metodología desarrollada ha sido aplicada para caracterizar una muestra de un concentrado de cobre procedente de la mina Kansanshi (Zambia). Esta caracterización se ha llevado a cabo para obtener la distribución de calcopirita según su tipo de intercrecimiento. La utilidad de esta distribución ha sido analizada bajo diferentes puntos de vista y en todos ellos los índices mineralúrgicos aportan información valiosa para caracterizar el comportamiento mineralúrgico de las partículas minerales. Los resultados derivados tanto del Análisis Discriminante como de la caracterización del concentrado de Kansanshi muestran la fiabilidad, utilidad y versatilidad de la metodología desarrollada, por lo que su integración como herramienta rutinaria en los sistemas actuales de análisis mineralógico pondría a disposición del mineralurgista gran cantidad de información textural complementaria a la información ofrecida por las técnicas actuales de caracterización mineralógica. ABSTRACT Process mineralogy has become in the last decades an essential tool in the mining and metallurgical sphere, especially driven by the emergence of Geometallurgy. This emergent discipline provides required information to efficiently tailor the circuit performance to the mineralogical variability inherent to ore deposits. To contribute to the Geometallurgical model, process mineralogy must provide quantitative data about the main mineralogical features implied in the minerallurgical behaviour of minerals. To address this characterisation, process mineralogy relies on automated systems. These systems are capable of providing a large amount of data quickly and accurately. However, when it comes to the characterisation of texture, mineralogists need to turn to qualitative descriptions based on observation, due to the fact that current systems can not offer quantitative textural information in a routine way. Aiming at the automated characterisation of textural information, this doctoral thesis arises to provide textural information relevant for concentration processes in a systematic way. The main objective of the thesis is the automated identification and characterisation of intergrowth types in mineral particles. Initially, the seven intergrowth types most relevant for flotation, leaching and grinding are considered. To achieve this goal, a methodology has been developed based on the computation of a set of numerical indices, which have been called minerallurgical indices. These indices have been designed with two main purposes: on the one hand, each index provides information to characterise the main mineralogical features which determine particle behaviour during concentration processes and, on the other hand, these indices are used as discriminant variables for identifying the intergrowth type by Discriminant Analysis. Along with the indices developed in this work, three indices proposed by other authors belonging to different fields of materials science have been also considered after being adapted to the analysis of mineral particles. These indices are Contiguity Index (Gurland, 1958), Intergrowth Index (Amstutz and Giger, 1972) and Coordination Index (Jeulin, 1981). The design of minerallurgical indices is based on the fundamental principles of Stereology and Digital Image Analysis. Their computation has been carried out using the linear intercepts method, implemented by means of MATLAB programming. This stereological method provides a set of measurements to obtain several parameters, both stereological and geometric. Based on these parameters, minerallurgical indices have been computed. For the assessment of the discriminant capacity of the developed indices, 200 cases have been selected according to their internal structure, so that one of the seven intergrowth types initially considered in this work can be easily recognised in any of their constituents. Minerallurgical indices have been computed for each case and used as discriminant variables. After applying discriminant analysis, 95% of the cases were correctly classified. This result shows that the proposed indices are reliable identifiers of intergrowth type. Once the discriminant power of the indices has been assessed, the developed methodology has been applied to characterise a copper concentrate sample from the Kansanshi copper mine (Zambia). This characterisation has been carried out to quantify the distribution of chalcopyrite with respect to intergrowth types. Different examples of the application of this distribution have been given to test the usefulness of the method. In all of them, the proposed indices provide valuable information to characterise the minerallurgical behaviour of mineral particles. Results derived from both Discriminant Analysis and the characterisation of the Kansanshi concentrate show the reliability, usefulness and versatility of the developed methodology. Therefore, its integration as a routine tool in current systems of automated mineralogical analysis should make available for minerallurgists a great deal of complementary information to treat the ore more efficiently.