937 resultados para likelihood-based inference


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The thin-spined porcupine, also known as the bristle-spined rat, Chaetomys subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus Chaetomys was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and karyotypic information to address this issue. Our molecular analyses included one individual of Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths. Results: All topologies recovered in our molecular phylogenetic analyses strongly supported Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial. Conclusion: Both molecular phylogenies and karyotypical evidence indicated that Chaetomys is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological divergence suggest that Chaetomys belongs to an early radiation of the Erethizontidae that may have occurred in the Early Miocene, and should be assigned to its own subfamily, the Chaetomyinae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chagas disease is still a major public health problem in Latin America. Its causative agent, Trypanosoma cruzi, can be typed into three major groups, T. cruzi I, T. cruzi II and hybrids. These groups each have specific genetic characteristics and epidemiological distributions. Several highly virulent strains are found in the hybrid group; their origin is still a matter of debate. The null hypothesis is that the hybrids are of polyphyletic origin, evolving independently from various hybridization events. The alternative hypothesis is that all extant hybrid strains originated from a single hybridization event. We sequenced both alleles of genes encoding EF-1 alpha, actin and SSU rDNA of 26 T. cruzi strains and DHFR-TS and TR of 12 strains. This information was used for network genealogy analysis and Bayesian phylogenies. We found T. cruzi I and T. cruzi II to be monophyletic and that all hybrids had different combinations of T. cruzi I and T. cruzi II haplotypes plus hybrid-specific haplotypes. Bootstrap values (networks) and posterior probabilities (Bayesian phylogenies) of clades supporting the monophyly of hybrids were far below the 95% confidence interval, indicating that the hybrid group is polyphyletic. We hypothesize that T. cruzi I and T. cruzi II are two different species and that the hybrids are extant representatives of independent events of genome hybridization, which sporadically have sufficient fitness to impact on the epidemiology of Chagas disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, the development of industrial processes brought on the outbreak of technologically complex systems. This development generated the necessity of research relative to the mathematical techniques that have the capacity to deal with project complexities and validation. Fuzzy models have been receiving particular attention in the area of nonlinear systems identification and analysis due to it is capacity to approximate nonlinear behavior and deal with uncertainty. A fuzzy rule-based model suitable for the approximation of many systems and functions is the Takagi-Sugeno (TS) fuzzy model. IS fuzzy models are nonlinear systems described by a set of if then rules which gives local linear representations of an underlying system. Such models can approximate a wide class of nonlinear systems. In this paper a performance analysis of a system based on IS fuzzy inference system for the calibration of electronic compass devices is considered. The contribution of the evaluated IS fuzzy inference system is to reduce the error obtained in data acquisition from a digital electronic compass. For the reliable operation of the TS fuzzy inference system, adequate error measurements must be taken. The error noise must be filtered before the application of the IS fuzzy inference system. The proposed method demonstrated an effectiveness of 57% at reducing the total error based on considered tests. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of genetic maps for auto-incompatible species, such as the yellow passion fruit (Passiflora edulis Sims f.flavicarpa Deg.) is restricted due to the unfeasibility of obtaining traditional mapping populations based on inbred lines. For this reason, yellow passion fruit linkage maps were generally constructed using a strategy known as two-way pseudo-testeross, based on monoparental dominant markers segregating in a 1:1 fashion. Due to the lack of information from these markers in one of the parents, two individual (parental) maps were obtained. However, integration of these maps is essential, and biparental markers can be used for such an operation. The objective of our study was to construct an integrated molecular map for a full-sib population of yellow passion fruit combining different loci configuration generated from amplified fragment length polymorphisms (AFLPs) and microsatellite markers and using a novel approach based on simultaneous maximum-likelihood estimation of linkage and linkage phases, specially designed for outcrossing species. Of the total number of loci, approximate to 76%, 21%, 0.7%, and 2.3% did segregate in 1:1, 3:1, 1:2:1, and 1:1:1:1 ratios, respectively. Ten linkage groups (LGs) were established with a logarithm of the odds (LOD) score >= 5.0 assuming a recombination fraction : <= 0.35. On average, 24 markers were assigned per LG, representing a total map length of 1687 cM, with a marker density of 6.9 cM. No markers were placed as accessories on the map as was done with previously constructed individual maps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results: PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions: PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper extends previous research and discussion on the use of multivariate continuous data, which are about to become more prevalent in forensic science. As an illustrative example, attention is drawn here on the area of comparative handwriting examinations. Multivariate continuous data can be obtained in this field by analysing the contour shape of loop characters through Fourier analysis. This methodology, based on existing research in this area, allows one describe in detail the morphology of character contours throughout a set of variables. This paper uses data collected from female and male writers to conduct a comparative analysis of likelihood ratio based evidence assessment procedures in both, evaluative and investigative proceedings. While the use of likelihood ratios in the former situation is now rather well established (typically, in order to discriminate between propositions of authorship of a given individual versus another, unknown individual), focus on the investigative setting still remains rather beyond considerations in practice. This paper seeks to highlight that investigative settings, too, can represent an area of application for which the likelihood ratio can offer a logical support. As an example, the inference of gender of the writer of an incriminated handwritten text is forwarded, analysed and discussed in this paper. The more general viewpoint according to which likelihood ratio analyses can be helpful for investigative proceedings is supported here through various simulations. These offer a characterisation of the robustness of the proposed likelihood ratio methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a competence-based instructional design system and a way to provide a personalization of navigation in the course content. The navigation aid tool builds on the competence graph and the student model, which includes the elements of uncertainty in the assessment of students. An individualized navigation graph is constructed for each student, suggesting the competences the student is more prepared to study. We use fuzzy set theory for dealing with uncertainty. The marks of the assessment tests are transformed into linguistic terms and used for assigning values to linguistic variables. For each competence, the level of difficulty and the level of knowing its prerequisites are calculated based on the assessment marks. Using these linguistic variables and approximate reasoning (fuzzy IF-THEN rules), a crisp category is assigned to each competence regarding its level of recommendation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae (Glis and Glirulus) and Leithiinae (Dryomys, Eliomys and Muscardinus) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus, and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiuros, Glis, Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicas is suggested to be a relict of this ancient diversification during the warm period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the increasing availability of various 'omics data, high-quality orthology assignment is crucial for evolutionary and functional genomics studies. We here present the fourth version of the eggNOG database (available at http://eggnog.embl.de) that derives nonsupervised orthologous groups (NOGs) from complete genomes, and then applies a comprehensive characterization and analysis pipeline to the resulting gene families. Compared with the previous version, we have more than tripled the underlying species set to cover 3686 organisms, keeping track with genome project completions while prioritizing the inclusion of high-quality genomes to minimize error propagation from incomplete proteome sets. Major technological advances include (i) a robust and scalable procedure for the identification and inclusion of high-quality genomes, (ii) provision of orthologous groups for 107 different taxonomic levels compared with 41 in eggNOGv3, (iii) identification and annotation of particularly closely related orthologous groups, facilitating analysis of related gene families, (iv) improvements of the clustering and functional annotation approach, (v) adoption of a revised tree building procedure based on the multiple alignments generated during the process and (vi) implementation of quality control procedures throughout the entire pipeline. As in previous versions, eggNOGv4 provides multiple sequence alignments and maximum-likelihood trees, as well as broad functional annotation. Users can access the complete database of orthologous groups via a web interface, as well as through bulk download.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the basis on which recruiters form hirability impressions for a job applicant is a key issue in organizational psychology and can be addressed as a social computing problem. We approach the problem from a face-to-face, nonverbal perspective where behavioral feature extraction and inference are automated. This paper presents a computational framework for the automatic prediction of hirability. To this end, we collected an audio-visual dataset of real job interviews where candidates were applying for a marketing job. We automatically extracted audio and visual behavioral cues related to both the applicant and the interviewer. We then evaluated several regression methods for the prediction of hirability scores and showed the feasibility of conducting such a task, with ridge regression explaining 36.2% of the variance. Feature groups were analyzed, and two main groups of behavioral cues were predictive of hirability: applicant audio features and interviewer visual cues, showing the predictive validity of cues related not only to the applicant, but also to the interviewer. As a last step, we analyzed the predictive validity of psychometric questionnaires often used in the personnel selection process, and found that these questionnaires were unable to predict hirability, suggesting that hirability impressions were formed based on the interaction during the interview rather than on questionnaire data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.