774 resultados para levator ani muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sys(Vol)) was 1.38 +/- 0.09% (n = 17),1.41 +/- 0.09% (n = 12) and 0.83 +/- 0.07% (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sys(Vol) decreased by 30% when the tubular system was fully depolarized and decreased by 15% when membrane cholesterol was depleted from the tubular system with methyl-beta-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 mum. There was also an increase by 30% and a decrease by 25% in t-sys(Vol) when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50% hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sys(Vol) expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9% of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. A decline in muscle mass and muscle strength characterizes normal aging. As clinical and animal studies show it relationship between higher cytokine levels and low muscle mass, the aim of this study was to investigate whether markers, of inflammation are associated with muscle mass and strength in well-functioning elderly persons. Methods. We Used baseline data (1997-1998) of the Health, Aging, and Body Composition (Health ABC) Study on 3075 black and white men and women aged 70-79 years. Midthigh muscle cross-sectional area (computed tomography), appendicular muscle mass (dual-energy x-ray ab absorptiometry). isokinetic knee extensor strength (KinCom). and isometric inip strength were measured. plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were assessed by enzyme-linked immunosorbent assay (ELISA). Results. Higher cytokine levels were generally associated with lower muscle mass and lower muscle strength. The most consistent relationship across the gender and race groups was observed for IL-6 and grip strength: per SD increase in IL-6, grip strength was 1.1 to 2.4 kg lower (p < .05) after adjustment for age, clinic Site. health status, medications, physical activity. smoking. height. and body fat. Ail overall measure of elevated cytokine level was created by combining the levels of IL-6 and TNF-alpha. With the exception of white men, elderly persons having high levels of IL-6 (> 1.80 pg/ml) as well as high levels of TNF-alpha (> 3.20 pg/ml) had a smaller muscle area, less appendicular mass. a lower knee extensor strength. and a lower grip strength compared to those with low levels of both cytokines. Conclusions. Higher plasma concentrations of IL-6 and TNF-alpha are associated with lower muscle mass and lower muscle strength in well-functioning older men and women. Higher cytokine levels. as often observed in healthy older persons. may contribute to the loss Of muscle mass and strength that accompanies aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Confocal imaging of impermeant fluorescent dyes trapped in the tubular (t-) system of skeletal muscle fibres of rat and cane toad was used to examine changes in the morphology of the t-system upon mechanical skinning, the time course of dye loss from the sealed t-systern in mechanically skinned fibres and the influence of rapid application and removal of glycerol on the morphology of the sealed t-system. In contrast to intact fibres, which have a t-systern open to the outside, the sealed t-systern of toad mechanically skinned fibres consistently displayed local swellings (vesicles). The occurrence of vesicles in the sealed t-system of rat-skinned fibres was infrequent. Application and removal of 200-400 mM glycerol to the sealed t-system did not produce any obvious changes in its morphology. The dyes fluo-3, fura-2 and Oregon green 488 were lost from the sealed t-system of toad fibres at different rates suggesting that the mechanism of organic anion transport across the tubular wall was not by indiscriminate bulk transport. The rate of fluo-3 and fura-2 loss from the sealed t-system of rat fibres was greater in rat than in toad fibres and could be explained by differences in surface area: volume ratio of the t-system in the two fibre types. Based on the results presented here and on other results from this laboratory, an explanation is given for the formation of numerous vesicles in toad-skinned fibres and lack of vesicle formation in rat-skinned fibres. This explanation can also help with better understanding the mechanism responsible for vacuole formation in intact fibres. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of store-operated Ca2+ entry (SOC) in single, mechanically skinned skeletal muscle cells by confocal microscopy shows that the inositol 1,4,5-trisphosphate (IP3) receptor acts as a sarcoplasmic reticulum [Ca2+] sensor and mediates SOC by physical coupling without playing a key role in Ca2+ release from internal stores, as is the case with various cell types in which SOC was investigated previously. The results have broad implications for understanding the mechanism of SOC that is essential for cell function in general and muscle function in particular. Moreover, the study ascribes an important role to the IN receptors in skeletal muscle, the role of which with respect to Ca2+ homeostasis was ill defined until now.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (K-i 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the kinematics and muscle activity associated with the standard sit-up, as a first step in the investigation of complex motor coordination. Eight normal human subjects lay on a force table and performed at least 15 sit-ups, with the arms across the chest and the legs straight and unconstrained. Several subjects also performed sit-ups with an additional weight added to the head. Support surface forces were recorded to calculate the location of the center of pressure and center of gravity; conventional motion analysis was used to measure segmental positions; and surface EMG was recorded from eight muscles. While the sit-up consists of two serial components, 'trunk curling' and 'footward pelvic rotation', it can be further subdivided into five phases, based on the kinematics. Phases I and II comprise trunk curling. Phase I consists of neck and upper trunk flexion, and phase II consists of lumbar trunk lifting. Phase II corresponds to the point of peak muscle contraction and maximum postural instability, the 'critical point' of the sit-up. Phases III-V comprise footward pelvic rotation. Phase III begins with pelvic rotation towards the feet. phase W with leg lowering, and phase V with contact between the legs and the support surface. The overall pattern of muscle activity was complex with times of EMG onset, peak activity, offset, and duration differing for different muscles. This complex pattern changed qualitatively from one phase to the next, suggesting that the roles of different muscles and, as a consequence, the overall form of coordination, change during the sit-up. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous NMR T-2 relaxation measurements were carried out on seven rabbit longissimus muscle samples in the period from 25 min to 28 h post-mortem at 200 MHz for H-1. To display differences in post-mortern pH progress and extent of changes in water characteristics during conversion of muscle to meat, three of the seven animals were pre-slaughter injected with adrenaline (0.5 mg/kg live weight 4 h before sacrifice) to differentiate muscle glycogen stores at the time of slaughter. Distributed analysis of T-2 data displayed clear differences in the characteristics of the various transverse relaxation components dependent on progress in pH, as did the water-holding capacity of samples 24 h postmortem. This reveals a pronounced effect of the progressive change in pH on the subsequent development in physical/chemical states of water during the conversion of muscle to meat. Finally, the relaxation characteristics are discussed in relation to supposed post-mortem processes of protein denaturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In experiments on isolated animal muscle, the force produced during active lengthening contractions can be up to twice the isometric force, whereas in human experiments lengthening force shows only modest, if any, increase in force. The presence of synergist and antagonist muscle activation associated with human experiments in situ may partly account for the difference between animal and human studies. Therefore, this study aimed to quantify the force-velocity relationship of the human soleus muscle and assess the likelihood that co-activation of antagonist muscles was responsible for the inhibition of torque during submaximal voluntary plantar flexor efforts. Seven subjects performed submaximal voluntary lengthening, shortening(at angular, velocities of +5, -5, +15, -15 and +30, and -30degrees s(-1)) and isometric plantar flexor efforts against an ankle torque motor. Angle-specific (90degrees) measures of plantar flexor torque plus surface and intramuscular electromyography from soleus, medial gastrocnemius and tibialis anterior were made. The level of activation (30% of maximal voluntary isometric effort) was maintained by providing direct visual feedback of the soleus electromyogram to the subject. In an attempt to isolate the contribution of soleus to the resultant plantar flexion torque, activation of the synergist and antagonist muscles were minimised by: (1) flexing the knee of the test limb, thereby minimising the activation of gastrocnemius, and (2) applying an anaesthetic block to the common peroneal nerve to eliminate activation of the primary antagonist muscle, tibialis anterior and the synergist muscles, peroneus longus and peroneus brevis. Plantar flexion torque decreased significantly (P<0.05) after blocking the common peroneal nerve which was likely due to abolishing activation of the peroneal muscles which are synergists for plantar flexion. When normalised to the corresponding isometric value, the force-velocity relationship between pre- and post-block conditions was not different. In both conditions, plantar flexion torques during shortening actions were significantly less than the isometric torque and decreased at faster velocities. During lengthening actions, however, plantar flexion torques were not significantly different from isometric regardless of angular velocity. It was concluded that the apparent inhibition of lengthening torques during voluntary activation is not due to co-activation of antagonist muscles. Results are presented as mean (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and,27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P < 0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design. A clinical study was conducted on 39 patients with acute, first-episode, unilateral low back pain and unilateral, segmental inhibition of the multifidus muscle. Patients were allocated randomly to a control or treatment group. Objectives. To document the natural course of lumbar multifidus recovery and to evaluate the effectiveness of specific, localized, exercise therapy on muscle recovery. Summary of Background Data. Acute low back pain usually resolves spontaneously, but the recurrence rate is high. Inhibition of multifidus occurs with acute, first-episode, low back pain, and pathologic changes in this muscle have been linked with poor outcome and recurrence of symptoms. Methods. Patients in group 1 received medical treatment only. Patients in group 2 received medical treatment and specific, localized, exercise therapy. Outcome measures for both groups included 4 weekly assessments of pain, disability, range of motion, and size of the multifidus cross-sectional area. Independent examiners were blinded to group allocation. Patients were reassessed at a 10-week follow-up examination. Results. Multifidus muscle recovery was not spontaneous on remission of painful symptoms in patients in group 1. Muscle recovery was more rapid and more complete in patients in group 2 who received exercise therapy (P = 0.0001). Other outcome measurements were similar for the two groups at the 4-week examination. Although they resumed normal levels of activity, patients in group 1 still had decreased multifidus muscle size at the 10-week follow-up examination. Conclusions. Multifidus muscle recovery is not spontaneous on remission of painful symptoms. Lack of localized, muscle support may be one reason for the high recurrence rate of low back pain following the initial episode.