947 resultados para leaf area consumed measurement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turfgrasses are ubiquitous in urban landscape and their role on carbon (C) cycle is increasing important also due to the considerable footprint related to their management practices. It is crucial to understand the mechanisms driving the C assimilation potential of these terrestrial ecosystems Several approaches have been proposed to assess C dynamics: micro-meteorological methods, small-chamber enclosure system (SC), chrono-sequence approach and various models. Natural and human-induced variables influence turfgrasses C fluxes. Species composition, environmental conditions, site characteristics, former land use and agronomic management are the most important factors considered in literature driving C sequestration potential. At the same time different approaches seem to influence C budget estimates. In order to study the effect of different management intensities on turfgrass, we estimated net ecosystem exchange (NEE) through a SC approach in a hole of a golf course in the province of Verona (Italy) for one year. The SC approach presented several advantages but also limits related to the measurement frequency, timing and duration overtime, and to the methodological errors connected to the measuring system. Daily CO2 fluxes changed according to the intensity of maintenance, likely due to different inputs and disturbances affecting biogeochemical cycles, combined also to the different leaf area index (LAI). The annual cumulative NEE decreased with the increase of the intensity of management. NEE was related to the seasonality of turfgrass, following temperatures and physiological activity. Generally on the growing season CO2 fluxes towards atmosphere exceeded C sequestered. The cumulative NEE showed a system near to a steady state for C dynamics. In the final part greenhouse gases (GHGs) emissions due to fossil fuel consumption for turfgrass upkeep were estimated, pinpointing that turfgrass may result a considerable C source. The C potential of trees and shrubs needs to be considered to obtain a complete budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80 of beech leaves showed herbivory damage, and about 6 of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate-vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open-top chambers (OTCs) to passively warm vegetation by 1-2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf d15N. Long-term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect d15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the effect of short-term water deficits at different periods of sunflower (Helianthus annuus L.) leaf development on the spatial and temporal patterns of tissue expansion and epidermal cell division. Six water-deficit periods were imposed with similar and constant values of soil water content, predawn leaf water potential and [ABA] in the xylem sap, and with negligible reduction of the rate of photosynthesis. Water deficit did not affect the duration of expansion and division. Regardless of their timing, deficits reduced relative expansion rate by 36% and relative cell division rate by 39% (cells blocked at the G0-G1 phase) in all positions within the leaf. However, reductions in final leaf area and cell number in a given zone of the leaf largely differed with the timing of deficit, with a maximum effect for earliest deficits. Individual cell area was only affected during the periods when division slowed down. These behaviors could be simulated in all leaf zones and for all timings by assuming that water deficit affects relative cell division rate and relative expansion rate independently, and that leaf development in each zone follows a stable three-phase pattern in which duration of each phase is stable if expressed in thermal time (C. Granier and F. Tardieu [1998b] Plant Cell Environ 21: 695–703).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ultraviolet-B (UV-B) radiation on water relations, leaf development, and gas-exchange characteristics in pea (Pisum sativum L. cv Meteor) plants subjected to drought were investigated. Plants grown throughout their development under a high irradiance of UV-B radiation (0.63 W m−2) were compared with those grown without UV-B radiation, and after 12 d one-half of the plants were subjected to 24 d of drought that resulted in mild water stress. UV-B radiation resulted in a decrease of adaxial stomatal conductance by approximately 65%, increasing stomatal limitation of CO2 uptake by 10 to 15%. However, there was no loss of mesophyll light-saturated photosynthetic activity. Growth in UV-B radiation resulted in large reductions of leaf area and plant biomass, which were associated with a decline in leaf cell numbers and cell division. UV-B radiation also inhibited epidermal cell expansion of the exposed surface of leaves. There was an interaction between UV-B radiation and drought treatments: UV-B radiation both delayed and reduced the severity of drought stress through reductions in plant water-loss rates, stomatal conductance, and leaf area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rms2 and rms4 pea ( Pisum sativum L.) branching mutants have higher and lower xylem-cytokinin concentration, respectively, relative to wild type (WT) plants. These genotypes were grown at two levels of nitrogen (N) supply for 18 - 20 d to determine whether or not xylem-cytokinin concentration (X-CK) or delivery altered the transpiration and leaf growth responses to N deprivation. Xylem sap was collected by pressurising de-topped root systems. As sap-flow rate increased, X-CK declined in WT and rms2, but did not change in rms4. When grown at 5.0 mM N, X-CKs of rms2 and rms4 were 36% higher and 6-fold lower, respectively, than WT at sap-flow rates equivalent to whole-plant transpiration. Photoperiod cytokinin (CK) delivery rates ( the product of transpiration and X-CK) decreased more than 6-fold in rms4. Growth of plants at 0.5 mM N had negligible (< 10%) effects on transpiration rates expressed on a leaf area basis in WT and rms4, but decreased transpiration rates of rms2. The low-N treatment decreased leaf expansion by 20 - 25% and expanding leaflet N concentration by 15%. These changes were similar in all genotypes. At sap-flow rates equivalent to whole-plant transpiration, the low N treatment decreased X-CK in rms2 but had no discernible effect in WT and rms4. Since the low N treatment decreased transpiration of all genotypes, photoperiod CK delivery rates also decreased in all genotypes. The similar leaf growth response of all genotypes to N deprivation despite differences in both absolute and relative X-CKs and deliveries suggests that shoot N status is more important in regulating leaf expansion than xylem-supplied cytokinins. The decreased X-CK and transpiration rate of rms2 following N deprivation suggests that changes in xylem-supplied CKs may modify water use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf area growth and nitrogen concentration per unit leaf area, N-a (g m(-2) N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot(-1)) and five rates (0.5-6.0 g pot(-1)) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, P a,, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (N-a or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between P-max and N-a. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raster graphic ampelometric software was not exclusively developed for the estimation of leaf area, but also for the characterization of grapevine (Viti vinifera L.) leaves. The software was written in C-Hprogramming language, using the C-1-1- Builder 2007 for Windows 95-XP and Linux operation systems. It handles desktop-scanned images. On the image analysed with the GRA.LE.D., the user has to determine 11 points. These points are then connected and the distances between them calculated. The GRA.LE.D. software supports standard ampelometric measurements such as leaf area, angles between the veins and lengths of the veins. These measurements are recorded by the software and exported into plain ASCII text files for single or multiple samples. Twenty-two biometric data points of each leaf are identified by the GRA.LE.D. It presents the opportunity to statistically analyse experimental data, allows comparison of cultivars and enables graphic reconstruction of leaves using the Microsoft Excel Chart Wizard. The GRA. LE.D. was thoroughly calibrated and compared to other widely used instruments and methods such as photo-gravimetry, LiCor L0100, WinDIAS2.0 and ImageTool. By comparison, the GRA.LE.D. presented the most accurate measurements of leaf area, but the LiCor L0100 and the WinDIAS2.0 were faster, while the photo-gravimetric method proved to be the most time-consuming. The WinDIAS2.0 instrument was the least reliable. The GRA.LE.D. is uncomplicated, user-friendly, accurate, consistent, reliable and has wide practical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.