990 resultados para lateral distribution
Resumo:
In tetrapods, only one gene encoding a somatostatin precursor has been identified so far. The present study reports the characterization of the cDNA clones that encode two distinct somatostatin precursors in the brain of the frog Rana ridibunda. The cDNAs were isolated by using degenerate oligonucleotides based on the sequence of the central region of somatostatin to screen a frog brain cDNA library. One of the cDNAs encodes a 115-amino acid protein (prepro-somatostatin-14; PSS1) that exhibits a high degree of structural similarity with the mammalian somatostatin precursor. The other cDNA encodes a 103-amino acid protein (prepro-[Pro2, Met13]somatostatin-14; PSS2) that contains the sequence of the somatostatin analog (peptide SS2) at its C terminus, but does not exhibit appreciable sequence similarity with PSS1 in the remaining region. In situ hybridization studies indicate differential expression of the PSS1 and PSS2 genes in the septum, the lateral part of the pallium, the amygdaloid complex, the posterior nuclei of the thalamus, the ventral hypothalamic nucleus, the torus semicircularis and the optic tectum. The somatostatin variant SS2 was significantly more potent (4-6 fold) than somatostatin itself in displacing [125I-Tyr0, D-Trp8] somatostatin-14 from its specific binding sites. The present study indicates that the two somatostatin variants could exert different functions in the frog brain and pituitary. These data also suggest that distinct genes encoding somatostatin variants may be expressed in the brain of other tetrapods.
Resumo:
Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids was studied in nine surface sediments from the Murray Ridge in the Arabian Sea obtained from varying water depths (900 to 3000 m) but in close lateral proximity and, therefore, likely receiving a similar particle flux. Due to substantial differences in bottom water oxygen concentration (<3 to 77 µmol/L) and sedimentation rate, substantial differences exist in the time the biomarker lipids are exposed to oxygen in the sediment. Long chain alkyl diol and keto-ol concentrations in the surface sediments (0-0.5 cm) decreased progressively with increasing oxygen exposure time, suggesting increased oxic degradation. The 1,15-keto-ol/diol ratio (DOXI) increased slightly with oxygen exposure time as diols had apparently slightly higher degradation rates than keto-ols. The ratio of 1,14- vs. 1,13- or 1,15-diols, used as upwelling proxies, did not show substantial changes. However, the C30 1,15-diol exhibited a slightly higher degradation rate than C28 and C30 1,13-diols, and thus the Long chain Diol Index (LDI), used as sea surface temperature proxy, showed a negative correlation with the maximum residence time in the oxic zone of the sediment, resulting in ca. 2-3.5 °C change, when translated to temperature. The UK'37 index did not show significant changes with increasing oxygen exposure. This suggests that oxic degradation may affect temperature reconstructions using the LDI in oxic settings and where oxygen concentrations have varied substantially over time.
Resumo:
Visual evoked magnetic responses were recorded to full-field and left and right half-field stimulation with three check sizes (70′, 34′ and 22′) in five normal subjects. Recordings were made sequentially on a 20-position grid (4 × 5) based on the inion, by means of a single-channel direct current-Superconducting Quantum Interference Device second-order gradiometer. The topographic maps were consistent on the same subjects recorded 2 months apart. The half-field responses produced the strongest signals in the contralateral hemisphere and were consistent with the cruciform model of the calcarine fissure. Right half fields produced upper-left-quadrant outgoing fields and lower-left-quadrant ingoing fields, while the left half field produced the opposite response. The topographic maps also varied with check size, with the larger checks producing positive or negative maximum position more anteriorly than small checks. In addition, with large checks the full-field responses could be explained as the summation of the two half fields, whereas full-field responses to smaller checks were more unpredictable and may be due to sources located at the occipital pole or lateral surface. In addition, dipole sources were located as appropriate with the use of inverse problem solutions. Topographic data will be vital to the clinical use of the visual evoked field but, in addition, provides complementary information to visual evoked potentials, allowing detailed studies of the visual cortex. © 1992 Kluwer Academic Publishers.
Resumo:
In this study we demonstrate the relevance of lateral particle transport in nepheloid layers for organic carbon (OC) accumulation and burial across high-productive continental margins. We present geochemical data from surface sediments and suspended particles in the bottom nepheloid layer (BNL) from the most productive coastal upwelling area of the modern ocean, the Benguela upwelling system offshore southwest Africa. Interpretation of depositional patterns and comparison of downslope trends in OC content, organic matter composition, and 14C age between suspended particles and surface sediments indicate that lateral particle transport is the primary mechanism controlling supply and burial of OC. We propose that effective seaward particle transport primarily along the BNL is a key process that promotes and maintains local high sedimentation rates, ultimately causing high preservation of OC in a depocenter on the upper slope offshore Namibia. As lateral transport efficiently displaces areas of enhanced OC burial from maximum production at highly productive continental margins, vertical particle flux models do not sufficiently explain the relationship between primary production and shallow-marine OC burial. On geologic time scales, the widest distribution and strongest intensity of lateral particle transport is expected during periods of rapid sea-level change. At times in the geologic past, widespread downslope lateral transport of OC thus may have been a primary driver of enhanced OC burial at deeper continental slopes and abyssal basins.
Resumo:
The neurotoxin BMAA (β-N-methylamino-l-alanine) and its isomer DAB (2,4-diaminobutyric acid) have been detected in seafood worldwide, including in Thau lagoon (French Mediterranean Sea). A cluster of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with BMAA, has also been observed in this region. Mussels, periphyton (i.e. biofilms attached to mussels) and plankton were sampled between July 2013 and October 2014, and analyzed using HILIC-MS/MS. BMAA, DAB and AEG (N-(2-aminoethyl)glycine) were found in almost all the samples of the lagoon. BMAA and DAB were present at 0.58 and 0.83, 2.6 and 3.3, 4.0 and 7.2 μg g−1 dry weight in plankton collected with nets, periphyton and mussels, respectively. Synechococcus sp., Ostreococcus tauri, Alexandrium catenella and eight species of diatoms were cultured and screened for BMAA and analogs. While Synechococcus sp., O. tauri and A. catenella did not produce BMAA under our culture conditions, four diatoms species contained both BMAA and DAB. Hence, diatoms may be a source of BMAA for mussels. Unlike other toxins produced by microalgae, BMAA and DAB were detected in significant amounts in tissues other than digestive glands in mussels.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.
Resumo: