996 resultados para laser cut panels
Resumo:
In the late 20th century, a value-shift began to influence political thinking, recognising the need for environmentally, socially and culturally sustainable resource development. This shift entailed moves away from thinking of nature and culture as separate entities - The former existing merely to serve the latter. Cultural landscape theory recognises 'nature' as at once both 'natural', and as a 'cultural' construct. As such it may offer a framework through which to progress in the quest for 'sustainable development'. This 2005 Masters thesis makes a contribution to that quest by asking whether contemporary developments in cultural landscape theory can contribute to rehabilitation strategies for Australian open-cut coal mining landscapes, an examplar resource development landscape. A thematic historial overview of landscape values and resource development in Australis post-1788, and a review of cultural landscape theory literature contribute to the formation of the theoretical framework: "reconnecting the interrupted landscape". The author then explores a possible application of this framework within the Australian open-cut coal mining landscape.
Resumo:
Background: Waist circumference has been identified as a valuable predictor of cardiovascular risk in children. The development of waist circumference percentiles and cut-offs for various ethnic groups are necessary because of differences in body composition. The purpose of this study was to develop waist circumference percentiles for Chinese children and to explore optimal waist circumference cut-off values for predicting cardiovascular risk factors clustering in this population.----- ----- Methods: Height, weight, and waist circumference were measured in 5529 children (2830 boys and 2699 girls) aged 6-12 years randomly selected from southern and northern China. Blood pressure, fasting triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose were obtained in a subsample (n = 1845). Smoothed percentile curves were produced using the LMS method. Receiver-operating characteristic analysis was used to derive the optimal age- and gender-specific waist circumference thresholds for predicting the clustering of cardiovascular risk factors.----- ----- Results: Gender-specific waist circumference percentiles were constructed. The waist circumference thresholds were at the 90th and 84th percentiles for Chinese boys and girls respectively, with sensitivity and specificity ranging from 67% to 83%. The odds ratio of a clustering of cardiovascular risk factors among boys and girls with a higher value than cut-off points was 10.349 (95% confidence interval 4.466 to 23.979) and 8.084 (95% confidence interval 3.147 to 20.767) compared with their counterparts.----- ----- Conclusions: Percentile curves for waist circumference of Chinese children are provided. The cut-off point for waist circumference to predict cardiovascular risk factors clustering is at the 90th and 84th percentiles for Chinese boys and girls, respectively.
Resumo:
Objective Laser Doppler imaging (LDI) was compared to wound outcomes in children's burns, to determine if the technology could be used to predict these outcomes. Methods Forty-eight patients with a total of 85 burns were included in the study. Patient median age was 4 years 10 months and scans were taken 0–186 h post-burn using the fast, low-resolution setting on the Moor LDI2 laser Doppler imager. Wounds were managed by standard practice, without taking into account the scan results. Time until complete re-epithelialisation and whether or not grafting and scar management were required were recorded for each wound. If wounds were treated with Silvazine™ or Acticoat™ prior to the scan, this was also recorded. Results The predominant colour of the scan was found to be significantly related to the re-epithelialisation, grafting and scar management outcomes and could be used to predict those outcomes. The prior use of Acticoat™ did not affect the scan relationship to outcomes, however, the use of Silvazine™ did complicate the relationship for light blue and green scanned partial thickness wounds. Scans taken within the 24-h window after-burn also appeared to be accurate predictors of wound outcome. Conclusion Laser Doppler imaging is accurate and effective in a paediatric population with a low-resolution fast-scan.
Resumo:
Constructing buildings using slip formed load bearing wall panels is becoming increasingly popular in Sri Lanka due to several advantages; low cost, environmental friendliness and rapid construction technique. These wall panels are already successfully implemented in many low rise buildings. However, the seismic capacities of these buildings have not been properly studied. Few seismic activities reported in Sri Lanka have not caused severe structural damage, but predictions can not be made as to whether this will continue to be the case in the future. This highlights the need to study the seismic capacity of buildings constructed in slip formed load bearing wall panels. This paper presents a study of the seismic capacity of the existing medium rise building.
Resumo:
While recent research has provided valuable information as to the composition of laser printer particles, their formation mechanisms, and explained why some printers are emitters whilst others are low emitters, fundamental questions relating to the potential exposure of office workers remained unanswered. In particular, (i) what impact does the operation of laser printers have on the background particle number concentration (PNC) of an office environment over the duration of a typical working day?; (ii) what is the airborne particle exposure to office workers in the vicinity of laser printers; (iii) what influence does the office ventilation have upon the transport and concentration of particles?; (iv) is there a need to control the generation of, and/or transport of particles arising from the operation of laser printers within an office environment?; (v) what instrumentation and methodology is relevant for characterising such particles within an office location? We present experimental evidence on printer temporal and spatial PNC during the operation of 107 laser printers within open plan offices of five buildings. We show for the first time that the eight-hour time-weighted average printer particle exposure is significantly less than the eight-hour time-weighted local background particle exposure, but that peak printer particle exposure can be greater than two orders of magnitude higher than local background particle exposure. The particle size range is predominantly ultrafine (< 100nm diameter). In addition we have established that office workers are constantly exposed to non-printer derived particle concentrations, with up to an order of magnitude difference in such exposure amongst offices, and propose that such exposure be controlled along with exposure to printer derived particles. We also propose, for the first time, that peak particle reference values be calculated for each office area analogous to the criteria used in Australia and elsewhere for evaluating exposure excursion above occupational hazardous chemical exposure standards. A universal peak particle reference value of 2.0 x 104 particles cm-3 has been proposed.
Resumo:
Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Gypsum plasterboards are widely used to protect light gauge steel frame (LSF) walls all over the world. Gypsum contains free and chemically bound water in its crystal structure. Plasterboard also contains gypsum (CaSO4.2H2O) and calcium carbonate (CaCO3). The dehydration of gypsum and the decomposition of calcium carbonate absorb heat, and thus are able to protect LSF walls from fires. Kolarkar and Mahendran (2008) developed an innovative composite wall panel system, where the insulation was sandwiched between two plasterboards to improve the thermal and structural performance of LSF wall panels under fire conditions. In order to understand the performance of gypsum plasterboards and LSF wall panels under standard fire conditions, many experiments were conducted in the Fire Research Laboratory of Queensland University of Technology (Kolarkar, 2010). Fire tests were conducted on single, double and triple layers of Type X gypsum plasterboards and load bearing LSF wall panels under standard fire conditions. However, suitable numerical models have not been developed to investigate the thermal performance of LSF walls using the innovative composite panels under standard fire conditions. Continued reliance on expensive and time consuming fire tests is not acceptable. Therefore this research developed suitable numerical models to investigate the thermal performance of both plasterboard assemblies and load bearing LSF wall panels. SAFIR, a finite element program, was used to investigate the thermal performance of gypsum plasterboard assemblies and LSF wall panels under standard fire conditions. Appropriate values of important thermal properties were proposed for plasterboards and insulations based on laboratory tests, literature review and comparisons of finite element analysis results of small scale plasterboard assemblies from this research and corresponding experimental results from Kolarkar (2010). The important thermal properties (thermal conductivity, specific heat capacity and density) of gypsum plasterboard and insulation materials were proposed as functions of temperature and used in the numerical models of load bearing LSF wall panels. Using these thermal properties, the developed finite element models were able to accurately predict the time temperature profiles of plasterboard assemblies while they predicted them reasonably well for load bearing LSF wall systems despite the many complexities that are present in these LSF wall systems under fires. This thesis presents the details of the finite element models of plasterboard assemblies and load bearing LSF wall panels including those with the composite panels developed by Kolarkar and Mahendran (2008). It examines and compares the thermal performance of composite panels developed based on different insulating materials of varying densities and thicknesses based on 11 small scale tests, and makes suitable recommendations for improved fire performance of stud wall panels protected by these composite panels. It also presents the thermal performance data of LSF wall systems and demonstrates the superior performance of LSF wall systems using the composite panels. Using the developed finite element of models of LSF walls, this thesis has proposed new LSF wall systems with increased fire rating. The developed finite element models are particularly useful in comparing the thermal performance of different wall panel systems without time consuming and expensive fire tests.
Resumo:
An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment. © 2011 American Chemical Society.
Resumo:
IR radiation has been studied for micro-organism inactivation of bacterial spores on metal substrates [1] and on metal and paper substrates [2]. A near-point near infrared laser water treatment apparatus for use in dental hand-pieces was also developed [3]. To date water sterilisation research using a mid-IR laser technique is very rare. According to the World Health Organisation [4], examinations for faecal indicator bacteria remain the most sensitive and specific way of assessing the hygienic quality of water. Bacteria that fall into this group are E. coli, other coliform bacteria (including E. cloacae) and to a lesser extent, faecal streptococci [5]. Protozoan cysts from organisms which cause giardiasis are the most frequently identified cause of waterborne diseases in developed countries [6,7]. The use of aerobic bacterial endospores to monitor the efficiency of various water treatments has been shown to provide a reliable and simple indicator of overall performance of water treatment[8,9].The efficacy of IR radiation for water disinfection compared to UV treatment has been further investigated in the present study. In addition FTIR spectroscopy in conjunction with Principle Component Analysis was used to characterise structural changes within the bacterial cells and endospores following IR laser treatment. Changes in carbohydrate content of E. cloacae following IR laser treatment were observed.
Resumo:
Gypsum plasterboards are commonly used as a fire safety material in the building industry. Many research studies have been undertaken to investigate the thermal behaviour of plasterboards under standard fire conditions. However, there are many discrepancies in relation to the basic thermal properties of plasterboards while simple equations are not available to predict the ambient surface time–temperature profiles of gypsum plasterboard panels that can be used in simulating the behaviour and strength of steel studs or joists in load bearing LSF wall and floor systems. In this research, suitable thermal properties of plasterboards were proposed based on a series of tests and available results from past research. Finite element models of gypsum plasterboard panels were then developed to simulate their thermal behaviour under standard fire conditions. The accuracy of the proposed thermal properties and the finite element models was validated by comparing the numerical results with available fire test results of plasterboard panels. This paper presents the details of the finite element models of plasterboard panels, the thermal analysis results from finite element analyses under standard fire conditions and their comparisons with experimental results