931 resultados para large data sets
Resumo:
Sickness absence (SA) is an important social, economic and public health issue. Identifying and understanding the determinants, whether biological, regulatory or, health services-related, of variability in SA duration is essential for better management of SA. The conditional frailty model (CFM) is useful when repeated SA events occur within the same individual, as it allows simultaneous analysis of event dependence and heterogeneity due to unknown, unmeasured, or unmeasurable factors. However, its use may encounter computational limitations when applied to very large data sets, as may frequently occur in the analysis of SA duration. To overcome the computational issue, we propose a Poisson-based conditional frailty model (CFPM) for repeated SA events that accounts for both event dependence and heterogeneity. To demonstrate the usefulness of the model proposed in the SA duration context, we used data from all non-work-related SA episodes that occurred in Catalonia (Spain) in 2007, initiated by either a diagnosis of neoplasm or mental and behavioral disorders. As expected, the CFPM results were very similar to those of the CFM for both diagnosis groups. The CPU time for the CFPM was substantially shorter than the CFM. The CFPM is an suitable alternative to the CFM in survival analysis with recurrent events,especially with large databases.
Resumo:
The final year project came to us as an opportunity to get involved in a topic which has appeared to be attractive during the learning process of majoring in economics: statistics and its application to the analysis of economic data, i.e. econometrics.Moreover, the combination of econometrics and computer science is a very hot topic nowadays, given the Information Technologies boom in the last decades and the consequent exponential increase in the amount of data collected and stored day by day. Data analysts able to deal with Big Data and to find useful results from it are verydemanded in these days and, according to our understanding, the work they do, although sometimes controversial in terms of ethics, is a clear source of value added both for private corporations and the public sector. For these reasons, the essence of this project is the study of a statistical instrument valid for the analysis of large datasets which is directly related to computer science: Partial Correlation Networks.The structure of the project has been determined by our objectives through the development of it. At first, the characteristics of the studied instrument are explained, from the basic ideas up to the features of the model behind it, with the final goal of presenting SPACE model as a tool for estimating interconnections in between elements in large data sets. Afterwards, an illustrated simulation is performed in order to show the power and efficiency of the model presented. And at last, the model is put into practice by analyzing a relatively large data set of real world data, with the objective of assessing whether the proposed statistical instrument is valid and useful when applied to a real multivariate time series. In short, our main goals are to present the model and evaluate if Partial Correlation Network Analysis is an effective, useful instrument and allows finding valuable results from Big Data.As a result, the findings all along this project suggest the Partial Correlation Estimation by Joint Sparse Regression Models approach presented by Peng et al. (2009) to work well under the assumption of sparsity of data. Moreover, partial correlation networks are shown to be a very valid tool to represent cross-sectional interconnections in between elements in large data sets.The scope of this project is however limited, as there are some sections in which deeper analysis would have been appropriate. Considering intertemporal connections in between elements, the choice of the tuning parameter lambda, or a deeper analysis of the results in the real data application are examples of aspects in which this project could be completed.To sum up, the analyzed statistical tool has been proved to be a very useful instrument to find relationships that connect the elements present in a large data set. And after all, partial correlation networks allow the owner of this set to observe and analyze the existing linkages that could have been omitted otherwise.
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining
Resumo:
This report examines how to estimate the parameters of a chaotic system given noisy observations of the state behavior of the system. Investigating parameter estimation for chaotic systems is interesting because of possible applications for high-precision measurement and for use in other signal processing, communication, and control applications involving chaotic systems. In this report, we examine theoretical issues regarding parameter estimation in chaotic systems and develop an efficient algorithm to perform parameter estimation. We discover two properties that are helpful for performing parameter estimation on non-structurally stable systems. First, it turns out that most data in a time series of state observations contribute very little information about the underlying parameters of a system, while a few sections of data may be extraordinarily sensitive to parameter changes. Second, for one-parameter families of systems, we demonstrate that there is often a preferred direction in parameter space governing how easily trajectories of one system can "shadow'" trajectories of nearby systems. This asymmetry of shadowing behavior in parameter space is proved for certain families of maps of the interval. Numerical evidence indicates that similar results may be true for a wide variety of other systems. Using the two properties cited above, we devise an algorithm for performing parameter estimation. Standard parameter estimation techniques such as the extended Kalman filter perform poorly on chaotic systems because of divergence problems. The proposed algorithm achieves accuracies several orders of magnitude better than the Kalman filter and has good convergence properties for large data sets.
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Background: Microarray based comparative genomic hybridisation (CGH) experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results: The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion: After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.
Resumo:
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data and a data warehouse. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular we look at two aspects, first how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories --- this is an important and challenging aspect of P-found because the data volumes involved are too large to be centralised. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling new scientific discoveries.
Resumo:
The increasing use of social media, applications or platforms that allow users to interact online, ensures that this environment will provide a useful source of evidence for the forensics examiner. Current tools for the examination of digital evidence find this data problematic as they are not designed for the collection and analysis of online data. Therefore, this paper presents a framework for the forensic analysis of user interaction with social media. In particular, it presents an inter-disciplinary approach for the quantitative analysis of user engagement to identify relational and temporal dimensions of evidence relevant to an investigation. This framework enables the analysis of large data sets from which a (much smaller) group of individuals of interest can be identified. In this way, it may be used to support the identification of individuals who might be ‘instigators’ of a criminal event orchestrated via social media, or a means of potentially identifying those who might be involved in the ‘peaks’ of activity. In order to demonstrate the applicability of the framework, this paper applies it to a case study of actors posting to a social media Web site.
Resumo:
In this paper we construct common-factor portfolios using a novel linear transformation of standard factor models extracted from large data sets of asset returns. The simple transformation proposed here keeps the basic properties of the usual factor transformations, although some new interesting properties are further attached to them. Some theoretical advantages are shown to be present. Also, their practical importance is confirmed in two applications: the performance of common-factor portfolios are shown to be superior to that of asset returns and factors commonly employed in the finance literature.
Resumo:
We employ the Bayesian framework to define a cointegration measure aimed to represent long term relationships between time series. For visualization of these relationships we introduce a dissimilarity matrix and a map based on the sorting points into neighborhoods (SPIN) technique, which has been previously used to analyze large data sets from DNA arrays. We exemplify the technique in three data sets: US interest rates (USIR), monthly inflation rates and gross domestic product (GDP) growth rates. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.