388 resultados para intervertebral staples
Clinical and pathological analysis of epidural inflammation in intervertebral disk extrusion in dogs
Resumo:
BACKGROUND Little is known about the pathologic changes in the epidural space after intervertebral disk (IVD) extrusion in the dog. OBJECTIVES To analyze the pathology of the epidural inflammatory response, and to search for correlations between this process and clinical findings. METHODS Clinical data from 105 chondrodystrophic (CD) and nonchondrodystrophic (NCD) dogs with IVD extrusion were recorded. Epidural material from these dogs was examined histopathologically and immunohistochemically. Using statistical analysis, we searched for correlations between severity of epidural inflammation and various clinical and pathologic variables. RESULTS Most dogs exhibited an epidural inflammatory response, ranging from acute invasion of neutrophils to formation of chronic granulation tissue. The mononuclear inflammatory infiltrates consisted mostly of monocytes and macrophages and only few T and B cells. Surprisingly, chronic inflammatory patterns also were found in animals with an acute clinical history. Severity of the epidural inflammation correlated with degree of the epidural hemorrhage and nucleus pulposus calcification (P = .003 and .040), but not with age, chondrodystrophic phenotype, neurologic grade, back pain, pretreatment, or duration. The degree of inflammation was statistically (P = .021) inversely correlated with the ability to regain ambulation. CONCLUSION AND CLINICAL IMPORTANCE Epidural inflammation occurs in the majority of dogs with IVD extrusion and may develop long before the onset of clinical signs. Presence of calcified IVD material and hemorrhage in the epidural space may be the triggers of this lesion rather than an adaptive immune response to the nucleus pulposus as suggested in previous studies. Because epidural inflammation may affect outcome, further research is warranted.
Resumo:
Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.
Resumo:
STUDY DESIGN Descriptive anatomical study on ovine and human cadaveric lumbar spinal segments. OBJECTIVE To describe the alternative transpedicular approach to deliver therapeutic agents into intervertebral disc (IVD). SUMMARY OF BACKGROUND DATA The present delivery approach of therapeutic agents (growth factors/cells/hydrogels) within the IVD is through injection, via the annulus fibrosus (AF). However, it has recently been demonstrated that small needle puncture of the AF leads to further degeneration and disc herniation. In addition, the injected material has a high chance to be extruded through the AF injury. METHODS Lumbar ovine and human spinal segments were used. Under fluoroscopy, a 2-mm Kirschner wire was introduced in the caudal vertebra through the pedicle and the inferior endplate to the nucleus pulposus. Gross anatomy analysis and high-resolution peripheral quantitative computed tomography (HR-pQCT) were performed to assess the right position of the wire in pedicles. Discography and nucleotomy were performed using a 14G cannula insertion or a 2-mm arthroscopic shaver blade, respectively. Nucleoplasty was also performed with agarose gel/contrast agent and imaged with HR-pQCT. RESULTS Gross anatomy, fluoroscopy, and HR-pQCT images showed that the nucleus pulposus could be approached through the endplate via the pedicle without affecting the spinal canal and the neural foramina. The contrast agent was delivered into the IVD and nucleus pulposus was removed from the disc and filled with agarose gel. CONCLUSION This study describes how a transpedicular approach can be used as an alternative route to deliver therapeutic agents to the disc without disruption of the AF showing the potential use of this technique in preclinical research and highlighting its clinical relevance for IVD regeneration.
Resumo:
The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities 1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT) on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10\% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70\% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.
Resumo:
Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration
Resumo:
Degeneration of the intervertebral disc, sometimes associated with low back pain and abnormal spinal motions, represents a major health issue with high costs. A non-invasive degeneration assessment via qualitative or quantitative MRI (magnetic resonance imaging) is possible, yet, no relation between mechanical properties and T2 maps of the intervertebral disc (IVD) has been considered, albeit T2 relaxation time values quantify the degree of degeneration. Therefore, MRI scans and mechanical tests were performed on 14 human lumbar intervertebral segments freed from posterior elements and all soft tissues excluding the IVD. Degeneration was evaluated in each specimen using morphological criteria, qualitative T2 weighted images and quantitative axial T2 map data and stiffness was calculated from the load-deflection curves of in vitro compression, torsion, lateral bending and flexion/extension tests. In addition to mean T2, the OTSU threshold of T2 (TOTSU), a robust and automatic histogram-based method that computes the optimal threshold maximizing the distinction of two classes of values, was calculated for anterior, posterior, left and right regions of each annulus fibrosus (AF). While mean T2 and degeneration schemes were not related to the IVDs' mechanical properties, TOTSU computed in the posterior AF correlated significantly with those classifications as well as with all stiffness values. TOTSU should therefore be included in future degeneration grading schemes.
Resumo:
Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.
Resumo:
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
Resumo:
Low back pain is a common ailment in dogs, particularly in specific breeds such as the German shepherd dog. A number of structures such as facet joint capsules, ligaments, dorsal root ganglia, periosteum, vertebral endplates and meninges have been associated with this condition. Yet, in spite of all diagnostic efforts, the origin of pain remains obscure in a substantial proportion of all cases. A further structure often being involved in vertebral column disorders is the intervertebral disc. The presence of nerves, however, is a precondition for pain sensation and, consequently, structures lacking innervation can be left out of consideration as a cause for low back pain. Nerve fibres have been demonstrated at the periphery of the intervertebral disc in man, rabbit and rat. With regard to the dog, however, the extent of intervertebral disc innervation is still being disputed. The goal of the present study, therefore, was to substantiate and expand current knowledge of intervertebral disc innervation. Protein gene product (PGP) 9.5 was used for immunohistochemical examination of serial transversal and sagittal paraffin sections of lumbar discs from adult dogs. This general marker revealed nerve fibres to be confined to the periphery of the intervertebral discs. These results indicate that even limited pathological processes affecting the outer layers of the intervertebral disc are prone to cause low back pain.
Resumo:
OBJECTIVE To describe the influence of fenestration at the disc herniation site on recurrence in thoracolumbar disc disease of chondrodystrophoid dogs. STUDY DESIGN Prospective clinical study. ANIMALS Chondrodystrophic dogs (n=19). METHODS Dogs were divided into 2 groups: group 1 (9 dogs) had thoracolumbar disc extrusion (Hansen type I) treated by hemilaminectomy and concomitant fenestration of the affected intervertebral disc and group 2 (10 dogs) had hemilaminectomy without fenestration. All dogs had 3 magnetic resonance imaging (MRI) examinations: preoperatively, immediately postoperatively to assess removal of herniated disc material, and again 6 weeks after surgery. RESULTS There were 13 male and 6 female dogs; mean age, 7.1 years. Thoracolumbar disc herniation was confirmed with MRI. Immediate post surgical MRI revealed that the herniated disc removal was complete in all but 1 dog and that fenestration did not lead to complete removal of nucleus pulposus within the intervertebral disc space. On the 3rd MRI examination, none of the group 1 dogs had further disc material herniation at the fenestrated site. Six of the 10 group 2 dogs had a recurrence of herniation leading to clinical signs in 3 dogs (pain in 2 dogs, paresis in 1 dog). CONCLUSION In thoracolumbar disc herniation, fenestration of the affected intervertebral disc space prevents further extrusion of disc material. CLINICAL RELEVANCE Fenestration reduces the risk of early recurrence of disc herniation and associated postoperative complications.