945 resultados para intelligent tutoring Systems
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.
Resumo:
Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.
Resumo:
Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.
Resumo:
Flow pumps are important tools in several engineering areas, such as in the fields of bioengineering and thermal management solutions for electronic devices. Nowadays, many of the new flow pump principles are based on the use of piezoelectric actuators, which present some advantages such as miniaturization potential and lower noise generation. In previous work, authors presented a study of a novel pump configuration based on placing an oscillating bimorph piezoelectric actuator in water to generate flow. It was concluded that this oscillatory behavior (such as fish swimming) yields vortex interaction, generating flow rate due to the action and reaction principle. Thus, following this idea the objective of this work is to explore this oscillatory principle by studying the interaction among generated vortex from two bimorph piezoelectric actuators oscillating inside the same pump channel, which is similar to the interaction of vortex generated by frontal fish and posterior ones when they swim together in a group formation. It is shown that parallel-series configurations of bimorph piezoelectric actuators inside the same pump channel provide higher flow rates and pressure for liquid pumping than simple parallel-series arrangements of corresponding single piezoelectric pumps, respectively. The scope of this work includes structural simulations of bimorph piezoelectric actuators, fluid flow simulations, and prototype construction for result validation.
Resumo:
This article presents a systematic and logical study of the topology optimized design, microfabrication, and static/dynamic performance characterization of an electro-thermo-mechanical microgripper. The microgripper is designed using a topology optimization algorithm based on a spatial filtering technique and considering different penalization coefficients for different material properties during the optimization cycle. The microgripper design has a symmetric monolithic 2D structure which consists of a complex combination of rigid links integrating both the actuating and gripping mechanisms. The numerical simulation is performed by studying the effects of convective heat transfer, thermal boundary conditions at the fixed anchors, and microgripper performance considering temperature-dependent and independent material properties. The microgripper is fabricated from a 25 mm thick nickel foil using laser microfabrication technology and its static/dynamic performance is experimentally evaluated. The static and dynamic electro-mechanical characteristics are analyzed as step response functions with respect to tweezing/actuating displacements, applied current/power, and actual electric resistance. A microgripper prototype having overall dimensions of 1mm (L) X 2.5mm (W) is able to deliver the maximum tweezing and actuating displacements of 25.5 mm and 33.2 mm along X and Y axes, respectively, under an applied power of 2.32 W. Experimental performance is compared with finite element modeling simulation results.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
This paper presents an IEEE 802.11p full-stack prototype implementation to data exchange among vehicles and between vehicles and the roadway infrastructures. The prototype architecture is based on FPGAs for Intermediate Frequency (IF) and base band purposes, using 802.11a based transceivers for RF interfaces. Power amplifiers were also addressed, by using commercial and in-house solutions. This implementation aims to provide technical solutions for Intelligent Transportation Systems (ITS) field, namely for tolling and traffic management related services, in order to promote safety, mobility and driving comfort through the dynamic and real-time cooperation among vehicles and/or between vehicles and infrastructures. The performance of the proposed scheme is tested under realistic urban and suburban driving conditions. Preliminary results are promising, since they comply with most of the 802.11p standard requirements.
Resumo:
This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take individual sensor readings, however, in many cases, it is relevant to compute aggregated quantities of these readings. In fact, the minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. In this context, we propose an algorithm for computing the min or max of sensor readings in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.