806 resultados para intelligent decision support systems
Resumo:
A variety of sustainable development research efforts and related activities are attempting to reconcile the issues of conserving our natural resources without limiting economic motivation while also improving our social equity and quality of life. Land use/land cover change, occurring on a global scale, is an aggregate of local land use decisions and profoundly impacts our environment. It is therefore the local decision making process that should be the eventual target of many of the ongoing data collection and research efforts which strive toward supporting a sustainable future. Satellite imagery data is a primary source of data upon which to build a core data set for use by researchers in analyzing this global change. A process is necessary to link global change research, utilizing satellite imagery, to the local land use decision making process. One example of this is the NASA-sponsored Regional Data Center (RDC) prototype. The RDC approach is an attempt to integrate science and technology at the community level. The anticipated result of this complex interaction between research and the decision making communities will be realized in the form of long-term benefits to the public.
Resumo:
In the legal domain, it is rare to find solutions to problems by simply applying algorithms or invoking deductive rules in some knowledge‐based program. Instead, expert practitioners often supplement domain‐specific knowledge with field experience. This type of expertise is often applied in the form of an analogy. This research proposes to combine both reasoning with precedents and reasoning with statutes and regulations in a way that will enhance the statutory interpretation task. This is being attempted through the integration of database and expert system technologies. Case‐based reasoning is being used to model legal precedents while rule‐based reasoning modules are being used to model the legislation and other types of causal knowledge. It is hoped to generalise these findings and to develop a formal methodology for integrating case‐based databases with rule‐based expert systems in the legal domain.
Resumo:
The article discusses a new decision support process for forestry pest management. Over the past few years, DSS have been introduced for forestry pest management, providing forest growers with advice in areas such as selecting the most suitable pesticide and relevant treatment. Most of the initiatives process knowledge from various domains for providing support for specific decision making problems. However, very few studies have identified the requirements of developing a combined process model in which all relevant practitioners can contribute and share knowledge for effective decision making; such an approach would need to include the decision makers’ perspective along with other relevant attributes such as the problem context and relevant policies. We outline a decision support process for forestry pest management, based on the design science research paradigm, in which a focus group technique has application to acquire both expert and practical knowledge in order to construct the DSS solution.
Resumo:
Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Background: Bhutan has reduced its malaria incidence significantly in the last 5 years, and is aiming for malaria elimination by 2016. To assist with the management of the Bhutanese malaria elimination programme a spatial decision support system (SDSS) was developed. The current study aims to describe SDSS development and evaluate SDSS utility and acceptability through informant interviews. Methods: The SDSS was developed based on the open-source Quantum geographical information system (QGIS) and piloted to support the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in the two sub-districts of Samdrup Jongkhar District. It was subsequently used to support reactive case detection (RACD) in the two sub-districts of Samdrup Jongkhar and two additional sub-districts in Sarpang District. Interviews were conducted to ascertain perceptions on utility and acceptability of 11 informants using the SDSS, including programme and district managers, and field workers. Results: A total of 1502 households with a population of 7165 were enumerated in the four sub-districts, and a total of 3491 LLINs were distributed with one LLIN per 1.7 persons. A total of 279 households representing 728 residents were involved with RACD. Informants considered that the SDSS was an improvement on previous methods for organizing LLIN distribution, IRS and RACD, and could be easily integrated into routine malaria and other vector-borne disease surveillance systems. Informants identified some challenges at the programme and field level, including the need for more skilled personnel to manage the SDSS, and more training to improve the effectiveness of SDSS implementation and use of hardware. Conclusions: The SDSS was well accepted and informants expected its use to be extended to other malaria reporting districts and other vector-borne diseases. Challenges associated with efficient SDSS use included adequate skills and knowledge, access to training and support, and availability of hardware including computers and global positioning system receivers.
Resumo:
Energy plays a prominent role in human society. As a result of technological and industrial development,the demand for energy is rapidly increasing. Existing power sources that are mainly fossil fuel based are leaving an unacceptable legacy of waste and pollution apart from diminishing stock of fuels.Hence, the focus is now shifted to large-scale propagation of renewable energy. Renewable energy technologies are clean sources of energy that have a much lower environmental impact than conventional energy technologies. Solar energy is one such renewable energy. Most renewable energy comes either directly or indirectly from the sun. Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a decision support system (DSS)would help in estimating solar energy potential considering the region’s energy requirement.This article explains the design and implementation of DSS for assessment of solar energy. The DSS with executive information systems and reporting tools helps to tap vast data resources and deliver information. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in time and can be used by decision-making bodies to assess various scenarios. It also offers means of entering, accessing, and interpreting the information for the purpose of sound decision making.
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
Electricity appears to be the energy carrier of choice for modern economics since growth in electricity has outpaced growth in the demand for fuels. A decision maker (DM) for accurate and efficient decisions in electricity distribution requires the sector wise and location wise electricity consumption information to predict the requirement of electricity. In this regard, an interactive computer-based Decision Support System (DSS) has been developed to compile, analyse and present the data at disaggregated levels for regional energy planning. This helps in providing the precise information needed to make timely decisions related to transmission and distribution planning leading to increased efficiency and productivity. This paper discusses the design and implementation of a DSS, which facilitates to analyse the consumption of electricity at various hierarchical levels (division, taluk, sub division, feeder) for selected periods. This DSS is validated with the data of transmission and distribution systems of Kolar district in Karnataka State, India.
Resumo:
Organizations that leverage lessons learned from their experience in the practice of complex real-world activities are faced with five difficult problems. First, how to represent the learning situation in a recognizable way. Second, how to represent what was actually done in terms of repeatable actions. Third, how to assess performance taking account of the particular circumstances. Fourth, how to abstract lessons learned that are re-usable on future occasions. Fifth, how to determine whether to pursue practice maturity or strategic relevance of activities. Here, organizational learning and performance improvement are investigated in a field study using the Context-based Intelligent Assistant Support (CIAS) approach. A new conceptual framework for practice-based organizational learning and performance improvement is presented that supports researchers and practitioners address the problems evoked and contributes to a practice-based approach to activity management. The novelty of the research lies in the simultaneous study of the different levels involved in the activity. Route selection in light rail infrastructure projects involves practices at both the strategic and operational levels; it is part managerial/political and part engineering. Aspectual comparison of practices represented in Contextual Graphs constitutes a new approach to the selection of Key Performance Indicators (KPIs). This approach is free from causality assumptions and forms the basis of a new approach to practice-based organizational learning and performance improvement. The evolution of practices in contextual graphs is shown to be an objective and measurable expression of organizational learning. This diachronic representation is interpreted using a practice-based organizational learning novelty typology. This dissertation shows how lessons learned when effectively leveraged by an organization lead to practice maturity. The practice maturity level of an activity in combination with an assessment of an activity’s strategic relevance can be used by management to prioritize improvement effort.
Resumo:
Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Structured Abstract:
Purpose: Very few studies investigate environmentally responsible behaviour (ERB). This paper presents a new 'Awareness Behaviour Intervention Action' (ABIA) Decision Support Framework to sustain ERB.
Design/methodology/approach: Previous ERB programmes have failed to deliver lasting results; they have not appropriately understood and provided systems to address ERB (Costanzo et al., 1986). These programmes were based on assumptions (Moloney et al., 2010), which this paper addresses. The ABIA Framework has been developed through a case study of social housing tenants waiting for low or zero carbon homes.
Findings: The ABIA Framework enables a better understanding of current attitudes to environmental issues and provides support for ERB alongside technological interventions employed to promote and sustain carbon reduction.
Research limitations/implications: The ABIA Framework should be tested on individuals and communities in a variety of socio-economic, political and cultural contexts. This will help unpack how it can impact on the behaviours of individuals and communities including stakeholders.
Practical implications: This type of research and the ABIA Framework developed from it are crucial if the UK pledge to become the first country in the World where all new homes from 2016 are to be zero carbon.
Social implications: The Framework encourages both individual and community discussion and solving of sustainability issues.
Originality/value: There are few, if any, studies that have developed a framework which can be used to support behavioural change for adaptation to sustainable living in low or zero carbon homes.