870 resultados para inhomogeneous coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By making use of the evolution equation of the damage field as derived from the statistical mesoscopic damage theory, we have preliminarily examined the inhomogeneous damage field in an elastic-plastic model under constant-velocity tension. Three types of deformation and damage field evolution are presented. The influence of the plastic matrix is examined. It seems that matrix plasticity may defer the failure due to damage evolution. A criterion for damage localization is consistent with the numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coatings of TiCp reinforced composite have been produced by laser cladding. Two kinds of coating with different TiCp origins were investigated, i.e. undissolved TiCp and in situ TiCp. For undissolved TiCp, epitaxial growth of TiC, precipitation of CrB, and a chemical reaction occur at phase interfaces, and nanoindentation loading curves show pop in marks caused by the plastic deformation associated with crack formation or debonding of TiCp from the matrix. As for in situ TiCp, no pop in mark appears. Meanwhile, in situ TiCp produces hardness and elastic modulus values that are higher than those produced by the coating that contains undissolved TiCp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用等离子电弧沉积的方法分别在GT35和40CrNiMo钢上沉积厚约为0.5mm 的氮化钛(TiN)膜。为了筛选基材,采用纳米压痕和划痕技术评价膜基界面结合和固体润滑效果。纳米压痕结果,采用等离子电弧沉积的方法,分别在GT35和40CrNiMo钢上沉积厚约为0.5$\mu $m 的氮化钛(TiN)膜。为了筛选基材,采用纳米压痕和划痕技术,评价膜基界面结合和固体润滑效果。纳米压痕结果,GT35,40CrNiMo和TiN的纳米硬度/弹性模量的典型值分别约为11.5 Gpa/330 Gpa,6.0 Gpa/210 Gpa,30 Gpa/450 Gpa。纳米划痕结果,GT35有较理想的膜基结合能力;GT35,40CrNiMo,TiN及其有机膜的摩擦系数分别约为0.25,0.45,0.15,0.10。同40CrNiMo相比,GT35是较为理想的基体材料。纳米压痕和划痕技术能提供丰富的近表面的弹塑性变形、断裂和摩擦等的信息,是评价亚微米薄膜力学性能的有效手段。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laser-discrete quenched steel (LDQS) substrate/as-deposited chromium (top high-contraction (HC) and underlying low-contraction (LC) chromium) system was investigated by dissolving coatings in order to reveal the mechanism that the service life of the coated parts is largely improved using the hybrid technique of laser pre-quenching plus chromium post-depositing. It was found that the surface characteristics of the substrate, LC and HC chromium layer can be simultaneously revealed owing to the dissolution edge effect of chromium coatings. Moreover, the periodical gradient morphologies of the LDQS substrate are clearly shown: the surfaces of laser transformation-hardened regions are rather smooth; a lot of fine micro-holes exist in the transition zones; there are many micro-dimples in the original substrate. Furthermore, the novel method of dissolving coatings with sharp interfaces may be used to reveal the structural features of a substrate/coating system, explore the effect of the substrate on the initial microstructure and morphologies of coatings, and check the quality of the coated-parts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the wear resistance of the gamma-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 degrees C) wear behaviors of laser clad gamma/Cr7C3/TiC composite coatings with different constitution of NiCr-Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary gamma/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough gamma/Cr7C3 eutectics matrix and their stability under high-temperature exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation and nanoscratch tests were performed for titanium nitride (TiN) coatings on different tool steel substrates to investigate the indentation/scratch induced deformation behavior of the coatings and the adhesion of the coating–substrate interfaces and their tribological property. In this work, TiN coatings with a thickness of about 500 nm were grown on GT35, 9Cr18 and 40CrNiMo steels using vacuum magnetic-filtering arc plasma deposition. In the nanoindentation tests, the hardness and modulus curves for TiN/GT35 reduced the slowest around the film thickness 500 nm with the increase of indentation depth, followed by TiN/9Cr18 and TiN/40CrNiMo. Improving adhesion properties of coating and substrate can decrease the differences of internal stress field. The scratch tests showed that the scratch response was controlled by plastic deformation in the substrate. The substrate plays an important role in determining the mechanical properties and wear resistance of such coatings. TiN/GT35 exhibited the best load-carrying capacity and scratch/wear resistance. As a consequence, GT35 is the best substrate for TiN coatings of the substrate materials tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide particle (TiCp) reinforced Ni alloy composite coatings were synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings were present in terms of TiCp origins, i.e. undissolved and in situ reacted TiCp, respectively. The former came from the TiCp pre-coated on the sample, whereas the latter from in situ reaction between titanium and graphite in the molten pool during laser irradiation. Conventional and high-resolution transmission electron microscope observations showed the epitaxial growth of TiC, the precipitation of CrB, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. The hardness, H, and elastic modulus, E, were measured by nanoindentation of the matrix near the TiCp interface. For undissolved TiCp, the loading curve revealed pop-in phenomena caused by the plastic deformation of the crack formation or debounding of TiCp from the matrix. As for in situ generated TiCp, no pop-in mark appears. On the other hand, in situ reacted TiCp led to much higher hardness and modulus than that in the case of undissolved TiCp. The coating reinforced by in situ generated TiCp displayed the highest impact wear resistance at both low and high impact conditions, as compared with coatings with undissolved TiCp and without TiCp. The impact wear resistance of the coating reinforced by undissolved TiCp increases at a low impact work but decreases at a high impact work, as compared with the single Ni alloy coating. The degree of wear for the composite coating depends primarily on the debonding removal of TiCp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface coatings and treatments have been used to reduce material loss of components in bubbling fluidized bed combustors (FBCs). The performance of protective coatings in FBC boilers and laboratory simulations is reviewed. Important coating properties to minimize wastage appear to be high hardness, low oxidation rate, low porosity, high adhesion and sufficient thickness to maintain protection for a long period. Economic considerations and criteria for choosing a suitable coating or treatment are discussed for the different types of bubbling FBC. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of temperature on tribological properties of plasma-sprayed Al-Cu-Fe quasicrystal (QC) coating after laser re-melting treatment. The laser treatment resulted in a more uniform, denser and harder microstructure than that of the as-sprayed coatings. Tribological experiments on the coatings were conducted under reciprocating motion at high frequency in the temperature range from 25 to 650 degreesC. Remarkable influence of temperature on the friction behavior of the coating was recorded and analyzed. Microstructural analysis indicated that the wear mechanisms of the re-melted QC coatings changed from abrasive wear at room temperature, to adhesive wear at 400 degreesC and severe adhesive wear at 650 degreesC owing to the material transfer of the counterpart ball. It was also observed that the ratio of the icosahedral (i)-phase to beta-Al-50(Fe,CU)(50) phase in the coating was higher after test at 400 'C than that at 650 'C. The variation of the ratio UP of coating and of the property of the counterpart ball and coating with the temperature are the two main factors influencing the wear mechanisms and value of the friction coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate materials studied. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1 < d < 2 μm thick, with associated electrical resistivity in the range 108 < ρ < 1012 Ω·cm, coefficient of friction <0.1 and surface RMS roughness as low as 2 A. The results are discussed with respect to surface pre-treatment, ion surface bombardment, interfacial reactivity and changes in plasma gas breakdown processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method is used to analyze the elastodynamic response of a columnar thermal barrier coating due to normal impact and oblique impact by an erosive particle. An assessment is made of the erosion by crack growth from preexisting flaws at the edge of each column: it is demonstrated that particle impacts can be sufficiently severe to give rise to columnar cracking. First, the transient stress state induced by the normal impact of a circular cylinder or a sphere is calculated in order to assess whether a 2D calculation adequately captures the more realistic 3D behavior. It is found that the transient stress states for the plane strain and axisymmetric models are similar. The sensitivity of response to particle diameter and to impact velocity is determined for both the cylinder and the sphere. Second, the transient stress state is explored for 2D oblique impact by a circular cylindrical particle and by an angular cylindrical particle. The sensitivity of transient tensile stress within the columns to particle shape (circular and angular), impact angle, impact location, orientation of the angular particle, and to the level of friction is explored in turn. The paper concludes with an evaluation of the effect of inclining the thermal barrier coating columns upon their erosion resistance. © 2011 The American Ceramic Society.