987 resultados para inhalatory anesthesia
Resumo:
Some leg telangiectasias may be refractory to treatment, including sclerotherapy and lasers.
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.
Resumo:
Recently, our study group demonstrated the usefulness of ultrasonographic guidance in ilioinguinal/iliohypogastric nerve blocks in children. As a consequence, we designed a follow-up study to evaluate the optimal volume of local anesthetic for this regional anesthetic technique. Using a modified step-up-step-down approach, with 10 children in each study group, a starting dose of 0.2 mL/kg of 0.25% levobupivacaine was administered to perform an ilioinguinal/iliohypogastric nerve block under ultrasonographic guidance. After each group of 10 patients, the results were analyzed, and if all blocks were successful, the volume of local anesthetic was decreased by 50%, and a further 10 patients were enrolled into the study. Failure to achieve a 100% success rate within a group subjected patients to an automatic increase of half the previous volume reduction to be used in the subsequent group. Using 0.2 and 0.1 mL/kg of 0.25% levobupivacaine, the success rate was 100%. With a volume of 0.05 mL/kg of 0.25% levobupivacaine, 4 of 10 children received additional analgesia because of an inadequate block. Therefore, according to the protocol, the amount was increased to 0.075 mL/kg of 0.25% levobupivacaine, where the success rate was again 100%. We conclude that ultrasonographic guidance for ilioinguinal/iliohypogastric nerve blocks in children allowed a reduction of the volume of local anesthetic to 0.075 mL/kg.
Resumo:
Besides providing effective analgesia, thoracic epidural anesthesia (TEA) has been shown to decrease perioperative morbidity and mortality. Because of its vasodilatory properties in association with the sympathetic blockade, however, TEA may potentially aggravate cardiovascular dysfunctions resulting from sepsis and systemic inflammatory response syndrome. The objective of the present study was to assess the effects of TEA on hemodynamics, global oxygen transport, and renal function in ovine endotoxemia. After a baseline measurement in healthy sheep (n = 18), Salmonella typhosa endotoxin was centrally infused at incremental doses to induce and maintain a hypotensive-hypodynamic circulation using an established protocol. The animals were then randomly assigned to one of two groups. In the treatment group, continuous TEA was initiated with 0.1 mL.kg of 0.125% bupivacaine at the onset of endotoxemia and maintained with 0.1 mL.kg.h. In the control group, the same amount of isotonic sodium chloride solution was injected through the epidural catheter. In the animals surviving the entire experiment (n = 7 per group), cardiac index and mean arterial pressure decreased in a dose-dependent manner during endotoxin infusion. In the TEA group, neither systemic hemodynamics nor global oxygen transport were impaired beyond the changes caused by endotoxemia itself. Urinary output was increased in the TEA group as compared with the control group (P < 0.05). In this model of endotoxic shock, TEA improved renal perfusion without affecting cardiopulmonary hemodynamics and global oxygen transport.
Resumo:
OBJECTIVE: To evaluate pulmonary and cardiovascular effects of a recruitment maneuver (RM) combined with positive end-expiratory pressure (PEEP) during total intravenous anesthesia in ponies. ANIMALS: 6 healthy adult Shetland ponies. PROCEDURE: After premedication with detomidine (10 microg/kg, IV), anesthesia was induced with climazolam (0.06 mg/kg, IV) and ketamine (2.2 mg/kg, IV) and maintained with a constant rate infusion of detomidine (0.024 mg/kg/h), climazolam (0.036 mg/kg/h), and ketamine (2.4 mg/kg/h). The RM was preceded by an incremental PEEP titration and followed by a decremental PEEP titration, both at a constant airway pressure difference (deltaP) of 20 cm H2O. The RM consisted of a stepwise increase in deltaP by 25, 30, and 35 cm H2O obtained by increasing peak inspiratory pressure (PIP) to 45, 50, and 55 cm H2O, while maintaining PEEP at 20 cm H2O. Hemodynamic and pulmonary variables were analyzed at every step of the PEEP titration-RM. RESULTS: During the PEEP titration-RM, there was a significant increase in PaO 2 (+12%), dynamic compliance (+ 62%), and heart rate (+17%) and a decrease in shunt (-19%) and mean arterial blood pressure (-21%) was recorded. Cardiac output remained stable. CONCLUSIONS AND CLINICAL RELEVANCE: Although baseline oxygenation was high, Pa(O2) and dynamic compliance further increased during the RM. Despite the use of high PIP and PEEP and a high tidal volume, limited cardiovascular compromise was detected. A PEEP titration-RM may be used to improve oxygenation in anesthetized ponies. During stable hemodynamic conditions, PEEP titration-RM can be performed with acceptable adverse cardiovascular effects.
Resumo:
OBJECTIVE: To compare analgesic efficacy of preoperative versus postoperative administration of carprofen and to determine, if preincisional mepivacaine epidural anesthesia improves postoperative analgesia in dogs treated with carprofen. STUDY DESIGN: Blind, randomized clinical study. ANIMALS: Dogs with femoral (n=18) or pelvic (27) fractures. METHODS: Dogs were grouped by restricted randomization into 4 groups: group 1 = carprofen (4 mg/kg subcutaneously) immediately before induction of anesthesia, no epidural anesthesia; group 2 = carprofen immediately after extubation, no epidural anesthesia; group 3 = carprofen immediately before induction, mepivacaine epidural block 15 minutes before surgical incision; and group 4 = mepivacaine epidural block 15 minutes before surgical incision, carprofen after extubation. All dogs were administered carprofen (4 mg/kg, subcutaneously, once daily) for 4 days after surgery. Physiologic variables, nociceptive threshold, lameness score, pain, and sedation (numerical rating scale [NRS], visual analog scale [VAS]), plasma glucose and cortisol concentration, renal function, and hemostatic variables were measured preoperatively and at various times after surgery. Dogs with VAS pain scores >30 were administered rescue analgesia. RESULTS: Group 3 and 4 dogs had significantly lower pain scores and amount of rescue analgesia compared with groups 1 and 2. VAS and NRS pain scores were not significantly different among groups 1 and 2 or among groups 3 and 4. There was no treatment effect on renal function and hemostatic variables. CONCLUSIONS: Preoperative carprofen combined with mepivacaine epidural anesthesia had superior postoperative analgesia compared with preoperative carprofen alone. When preoperative epidural anesthesia was performed, preoperative administration of carprofen did not improve postoperative analgesia compared with postoperative administration of carprofen. CLINICAL RELEVANCE: Preoperative administration of systemic opioid agonists in combination with regional anesthesia and postoperative administration of carprofen provides safe and effective pain relieve in canine fracture repair.
Resumo:
Deep litter has been shown to decrease stereotypic wire-gnawing in male golden hamsters, suggesting that increased litter depth may be associated with decreased chronic stress levels. To determine the relationship between litter depth and stress levels in hamsters, the authors measured serum levels of corticosterone, cortisol, and ACTH in male golden hamsters kept in cages with three different depths of litter. The duration of handling the hamsters significantly increased the concentrations of corticosterone, cortisol, and the ratio of cortisol/corticosterone. It took longer to catch hamsters housed in cages with deep litter and the ACTH levels were higher in these hamsters. The positive effect of the enrichment (deep litter) was diminished by methodological problems during handling/anesthesia.
Resumo:
Microcirculatory dysfunction contributes significantly to tissue hypoxia and multiple organ failure in sepsis. Ischemia of the gut and intestinal hypoxia are especially relevant for the evolution of sepsis because the mucosal barrier function may be impaired, leading to translocation of bacteria and toxins. Because sympathetic blockade enhances intestinal perfusion under physiologic conditions, we hypothesized that thoracic epidural anesthesia (TEA) may attenuate microcirculatory perturbations during sepsis. The present study was designed as a prospective and controlled laboratory experiment to assess the effects of continuous TEA on the mucosal microcirculation in a cecal ligation and perforation model of sepsis in rats. Anesthetized Sprague-Dawley rats underwent laparotomy and cecal ligation and perforation to induce sepsis. Subsequently, either bupivacaine 0.125% (n = 10) or isotonic sodium chloride solution (n = 9) was continuously infused via the thoracic epidural catheter for 24 h. In addition, a sham laparotomy was carried out in eight animals. Intravital videomicroscopy was then performed on six to ten villi of ileum mucosa. The capillary density was measured as areas encircled by perfused capillaries, that is, intercapillary areas. The TEA accomplished recruitment of microcirculatory units in the intestinal mucosa by decreasing total intercapillary areas (1,317 +/- 403 vs. 1,001 +/- 236 microm2) and continuously perfused intercapillary areas (1,937 +/- 512 vs. 1,311 +/- 678 microm2, each P < 0.05). Notably, TEA did not impair systemic hemodynamic variables beyond the changes caused by sepsis itself. Therefore, sympathetic blockade may represent a therapeutic option to treat impaired microcirculation in the gut mucosa resulting from sepsis. Additional studies are warranted to assess the microcirculatory effects of sympathetic blockade on other splanchnic organs in systemic inflammation.
Resumo:
BACKGROUND: Radiotherapy (RT) has become an important treatment modality in pediatric oncology, but its delivery to young children with cancer is challenging and general anesthesia is often needed. METHODS: To evaluate whether a psychoeducational intervention might reduce the need for anesthesia, 223 consecutive pediatric cancer patients receiving 4141 RT fractions during 244 RT courses between February 1989 and January 2006 were studied. Whereas in 154 RT courses corresponding with 2580 RT fractions patients received no psychoeducational intervention (group A), 90 RT courses respectively 1561 RT fractions were accomplished by using psychoeducational intervention (group B). This tailored psychoeducational intervention in group B included a play program and interactive support by a trained nurse according to age to get familiar with staff, equipment and procedure of radiotherapy. RESULTS: Group A did not differ significantly from group B in age at RT, gender, diagnosis, localization of RT and positioning during RT. Whereas 33 (21.4%) patients in group A got anesthesia, only 8 (8.9%) patients in group B needed anesthesia. The median age of cooperating patients without anesthesia decreased from 3.2 to 2.7 years. In both uni- and multivariate analyses the psychoeducational intervention significantly and independently reduced the need for anesthesia. CONCLUSION: We conclude that a specifically tailored psychoeducational intervention is able to reduce the need for anesthesia in children undergoing RT for cancer. This results in lower costs and increased cooperation during RT.
Resumo:
OBJECTIVE: To compare anesthesia recovery quality after racemic (R-/S-) or S-ketamine infusions during isoflurane anesthesia in horses. ANIMALS: 10 horses undergoing arthroscopy. PROCEDURES: After administration of xylazine for sedation, horses (n = 5/group) received R-/S-ketamine (2.2 mg/kg) or S-ketamine (1.1 mg/kg), IV, for anesthesia induction. Anesthesia was maintained with isoflurane in oxygen and R-/S-ketamine (1 mg/kg/h) or S-ketamine (0.5 mg/kg/h). Heart rate, invasive mean arterial pressure, and end-tidal isoflurane concentration were recorded before and during surgical stimulation. Arterial blood gases were evaluated every 30 minutes. Arterial ketamine and norketamine enantiomer plasma concentrations were quantified at 60 and 120 minutes. After surgery, horses were kept in a padded recovery box, sedated with xylazine, and video-recorded for evaluation of recovery quality by use of a visual analogue scale (VAS) and a numeric rating scale. RESULTS: Horses in the S-ketamine group had better numeric rating scale and VAS values than those in the R-/S-ketamine group. In the R-/S-ketamine group, duration of infusion was positively correlated with VAS value. Both groups had significant increases in heart rate and mean arterial pressure during surgical stimulation; values in the R-/S-ketamine group were significantly higher than those of the S-ketamine group. Horses in the R-/S-ketamine group required slightly higher end-tidal isoflurane concentration to maintain a surgical plane of anesthesia. Moderate respiratory acidosis and reduced oxygenation were evident. The R-norketamine concentrations were significantly lower than S-norketamine concentrations in the R-/S-ketamine group. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with R-/S-ketamine, anesthesia recovery was better with S-ketamine infusions in horses.