980 resultados para inflammatory gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Dietary isoflavones are thought to be cardioprotective because of their structural similarity to estrogen. The reduction of concentrations of circulating inflammatory markers by estrogen may be one of the mechanisms by which premenopausal women are protected against cardiovascular disease. Objective: Our aim was to investigate the effects of isolated soy isoflavones on inflammatory biomarkers [von Willebrand factor, intracellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin, monocyte chemoattractant protein 1, C-reactive protein (CRP), and endothelin 1 concentrations]. Differences with respect to single-nucleotide polymorphisms in selected genes [estrogen receptor alpha (XbaI and PvuII), estrogen receptor beta [ER beta (AluI) and ER beta[cx] (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), and cholesteryl ester transfer protein (TaqIB)] and equol production were investigated. Design: One hundred seventeen healthy European postmenopausal women participated in this randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2:1;50 mg/d) or placebo cereal bars were consumed for 8 wk, with a washout period of 8 wk between the crossover. Plasma inflammatory factors were measured at 0 and 8 wk of each study arm. Results: Isoflavones improved CRP concentrations [odds ratio (95% Cl) for CRP values >1 mg/L for isoflavone compared with placebo: 0.43 (0.27, 0.69)]; no significant effects of isoflavone treatment on other plasma inflammatory markers were observed. No significant differences in the response to isoflavones were observed according to subgroups of equol production. Differences in the VCAM-1 response to isoflavones and to placebo were found with ER beta AluI genotypes. Conclusion: Isoflavones have beneficial effects on CRP concentrations, but not on other inflammatory biomarkers of cardiovascular disease risk in postmenopausal women, and may improve VCAM-1 in an ER beta gene polymorphic subgroup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: 25-hydroxyvitamin D (25OHD) concentrations have been shown to be associated with major clinical outcomes, with a suggestion that individual risk may vary according to common genetic differences in the vitamin D receptor (VDR) gene. Hence, we tested for the interactions between two previously studied VDR polymorphisms and 25OHD on metabolic and cardiovascular disease-related outcomes in a large population-based study. METHODS: Interactions between two previously studied VDR polymorphisms (rs7968585 and rs2239179) and 25OHD concentrations on metabolic and cardiovascular disease-related outcomes such as obesity- (body mass index, waist circumference, waist-hip ratio (WHR)), cardiovascular- (systolic and diastolic blood pressure), lipid- (high- and low-density lipoprotein, triglycerides, total cholesterol), inflammatory- (C-reactive protein, fibrinogen, insulin growth factor-1, tissue plasminogen activator) and diabetes- (glycated haemoglobin) related markers were examined in the 1958 British Birth cohort (n up to 5160). Interactions between each SNP and 25OHD concentrations were assessed using linear regression and the likelihood ratio test. RESULTS: After Bonferroni correction, none of the interactions reached statistical significance except for the interaction between the VDR SNP rs2239179 and 25OHD concentrations on waist-hip ratio (WHR) (P=0.03). For every 1nmol/L higher 25OHD concentrations, the association with WHR was stronger among those with two major alleles (-4.0%, P=6.26e-24) compared to those with either one or no major alleles (-2.3%, P≤8.201e-07, for both) of the VDR SNP rs2239179. CONCLUSION: We found no evidence for VDR polymorphisms acting as major modifiers of the association between 25OHD concentrations and cardio-metabolic risk. Interaction between VDR SNP rs2239179 and 25OHD on WHR warrants further confirmation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background— T NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism (SNP) C242T of the p22phox subunit of NADPH oxidase has been reported to be negatively associated with coronary heart disease (CHD) and may predict disease prevalence. However, the underlying mechanisms remain unknown. Methods and Results— Using computer molecular modelling we discovered that C242T SNP causes significant structural changes in the extracellular loop of p22phox and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22phox reduced significantly Nox2 expression but had no significant effect on basal endothelial O2.- production or the expression of Nox1 and Nox4. When cells were stimulated with TNFα (or high glucose), C242T p22phox inhibited significantly TNFα-induced Nox2 maturation, O2.- production, MAPK and NFκB activation and inflammation (all p<0.05). These C242T effects were further confirmed using p22phox shRNA engineered HeLa cells and Nox2-/- coronary microvascular endothelial cells. Clinical significance was investigated using saphenous vein segments from non CHD subjects after phlebectomies. TT (C242T) allele was common (prevalence of ~22%) and compared to CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2.- generation in response to high glucose challenge. Conclusions— C242T SNP causes p22phox structural changes that inhibit endothelial Nox2 activation and oxidative response to TNFα or high glucose stimulation. C242T SNP may represent a natural protective mechanism against inflammatory cardiovascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the study: Magnolia ovata (A.St.-Hil.) Spreng (formerly Talauma ovata), known as ""pinha-do-brejo"" or ""baguacu"", is a large tree widely distributed in Brazil. Its trunk bark has been used in folk medicine against fever. However, no data have been published to support the antipyretic ethnopharmacological use. This study investigated the antipyretic and anti-inflammatory effects of the ethanolic extract (EEMO). dichloromethane fraction (DCM), and the isolated compound costunolide. Materials and methods: The antipyretic and anti-inflammatory activities were evaluated in experimental models of fever and inflammation in mice. Results: The oral administration of EEMO, DCM and costunolide inhibited carrageenan (Cg)-induced paw oedema (ID(50) 72.35 (38.64-135.46) mg/kg, 5.8 (2.41-14.04) mg/kg and 0.18 (0.12-0.27) mg/kg, respectively) and was effective in abolishing lipopolysaccharide (LPS)-induced fever (30 mg/kg, 4.5 mg/kg and 0.15 mg/kg, respectively). EEMO was also effective in reducing cell migration in the pleurisy model. Intraplantar injection of costunolide also reduced the paw oedema, myeloperoxidase and N-acetyl-glucosaminidase activity induced by Cg in mice. Conclusions: Collectively, these results show, for the first time, that extracts obtained from Magnolia ovata possess antipyretic and anti-inflammatory properties, and costunolide appears to be the compound responsible for these effects. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high ingestion of oleic (OLA) and linoleic (LNA) acids by Western populations, the presence of inflammatory diseases in these populations, and the importance of neutrophils in the inflammatory process led us to investigate the effects of oral ingestion of unesterified OLA and LNA on rat neutrophil function. Pure OLA and LNA were administered by gavage over 10 days. The doses used (0.11, 0.22 and 0.44 g/kg of body weight) were based on the Western consumption of OLA and LNA. Neither fatty acid affected food, calorie or water intake. The fatty acids were not toxic to neutrophils as evaluated by cytometry using propidium iodide (membrane integrity and DNA fragmentation). Neutrophil migration in response to intraperitoneal injection of glycogen and in the air pouch assay, was elevated after administration of either OLA or LNA. This effect was associated with enhancement of rolling and increased release of the chemokine CINC-2 alpha beta. Both fatty acids elevated l-selectin expression, whereas no effect on beta(2)-integrin expression was observed, as evaluated by flow cytometry. LNA increased the production of proinflammatory cytokines (IL-1 beta and CINC-2 alpha beta) by neutrophils after 4 h in culture and both fatty acids decreased the release of the same cytokines after 18 h. In conclusion, OLA and LNA modulate several functions of neutrophils and can influence the inflammatory process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta 2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2 alpha beta (cytokine-induced neutrophil chemoattractant-2 alpha beta), IL-1 beta (interleukin-1 beta), MIP-1 alpha (macrophage inflammatory protein-1 alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2 alpha beta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta 2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2 alpha beta release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: Prolonged physical exercise induces adaptive alterations in the hypothalamic-pituitary axis, increasing cortisol metabolism, and reducing cortisol synthesis and glucocorticoid sensitivity. The mechanisms responsible for this relative glucocorticoid resistance remain unknown but may involve expression of genes encoding glucocorticoid receptor (GR) and/or inflammatory molecules of nuclear factor kappa B1 (NFkB1) signaling pathway and cytokines. This study aimed to determine the impact of prolonged physical training on the expression of genes involved in glucocorticoid action and inflammatory response. Methods: Normal sedentary male cadets of the Brazilian Air Force Academy were submitted to 6 weeks of standardized physical training. Eighteen of 29 initially selected cadets were able to fully complete the training program. Fasting glucose, insulin and cortisol levels, cytokine concentration and the expression of genes encoding GR, NFkB1, inhibitor of NFkB1 and IkB kinase A were determined before and after the training period. Results: Prolonged physical exercise reduced the basal cortisol levels and the percent cortisol reduction after dexamethasone. These findings were associated with a significant reduction in the mRNA levels of GR (6.3%), NFkB1 (63%), inhibitor of NFkB1 (25%) and IkB kinase A (46%) with concomitant reduction in cytokine concentrations (ELISA). Conclusions: Prolonged physical training decreases the glucocorticoid sensitivity and the mRNA levels of the GR gene combined with decreased mRNA of genes related to the NFkB pathway. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice selected for a strong (AIRmax) or weak (AIRmin) acute inflammatory response present different susceptibilities to bacterial infections, autoimmune diseases and carcinogenesis. Variations in these phenotypes have been also detected in AIRmax and AIRmin mice rendered homozygous for Slc11a1 resistant (R) and susceptible (S) alleles. Our aim was to investigate if the phenotypic differences observed in these mice was related to the complement system. AIRmax and AIRmin mice and AIRmax and AIRmin groups homozygous for the resistance (R) or susceptibility (S) alleles of the solute carrier family 11a1 member (Slc11a1) gene, formerly designated Nramp-1. While no difference in complement activity was detected in sera from AIRmax and AIRmin strains, all sera from AIRmax Slc11a1 resistant mice (AIRmax(RR)) presented no complement-dependent hemolytic activity. Furthermore, C5 was not found in their sera by immunodiffusion and, polymerase chain reaction and DNA sequencing of its gene demonstrated that AIRmax(RR) mice are homozygous for the C5 deficient (D) mutation previously described in A/J. Therefore, the C5D allele was fixed in homozygosis in AIRmax(RR) line. The AIRmax(RR) line is a new experimental mouse model in which a strong inflammatory response can be triggered in vivo in the absence of C5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.