932 resultados para inertial transformations
Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials
Resumo:
The influence of inertial, thermal and rate - sensitive effects on the void growth at high strain rate in a thermal - viscoplastic solid is investigated by means of a theoretical model presented in the present paper. Numerical analysis of the model suggests that inertial, thermal and rate - sensitive effects are three major factors which greatly influence the behavior of void growth in the high strain rate case. Comparison of the mathematical model proposed in the present work and Johnson's model shows that if the temperature - dependence is considered, material viscosity eta can take the experimentally measured values.
Resumo:
Point-particle based direct numerical simulation (PPDNS) has been a productive research tool for studying both single-particle and particle-pair statistics of inertial particles suspended in a turbulent carrier flow. Here we focus on its use in addressing particle-pair statistics relevant to the quantification of turbulent collision rate of inertial particles. PPDNS is particularly useful as the interaction of particles with small-scale (dissipative) turbulent motion of the carrier flow is mostly relevant. Furthermore, since the particle size may be much smaller than the Kolmogorov length of the background fluid turbulence, a large number of particles are needed to accumulate meaningful pair statistics. Starting from the relative simple Lagrangian tracking of so-called ghost particles, PPDNS has significantly advanced our theoretical understanding of the kinematic formulation of the turbulent geometric collision kernel by providing essential data on dynamic collision kernel, radial relative velocity, and radial distribution function. A recent extension of PPDNS is a hybrid direct numerical simulation (HDNS) approach in which the effect of local hydrodynamic interactions of particles is considered, allowing quantitative assessment of the enhancement of collision efficiency by fluid turbulence. Limitations and open issues in PPDNS and HDNS are discussed. Finally, on-going studies of turbulent collision of inertial particles using large-eddy simulations and particle- resolved simulations are briefly discussed.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.
In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.
In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.
In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.
Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.
In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.
Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].
Resumo:
A Hohlraum-like configuration is proposed for realizing a simple compact source for neutrons. A laser pulse enters a tiny thin-shelled hollow-sphere target through a small opening and is self-consistently trapped in the cavity. The electrons in the inner shell-wall region are expelled by the light pressure. The resulting space-charge field compresses the local ions into a thin layer that becomes strongly heated. An inward expansion of ions into the shell cavity then occurs, resulting in the formation at the cavity center of a hot spot of ions at high density and temperature, similar to that in inertial electrostatic confinement.
Resumo:
The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.
The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.