863 resultados para in-plane strain
Resumo:
Variable aspect ratio porphyroblasts deformed in non-coaxial flow. and internally containing rotated relicts of an external foliation, can be used to characterise plane strain flow regimes. The distribution obtained by plotting the orientation of the long axis of such grains, classified by aspect ratio, against the orientation of the internal foliation is potentially a sensitive gauge of both the bulk shear strain (as previously suggested) and kinematic vorticity number. We illustrate the method using rotated biotite porphyroblasts in the Alpine Schist: a sequence of mid-crustal rocks that have been ramped to the surface along the Alpine Fault. a major transpressional plate boundary. Results indicate that, at distances greater than or equal to similar to1 km from the fault, the rocks have undergone a combination of irrotational fattening and dextral-oblique, normal-sense shear, with a bulk shear strain of similar to0.6 and kinematic vorticity number of similar to0.2. The vorticity analysis is compatible with estimates of strongly oblate bulk strain of similar to 75% maximum shortening. Dextral-reverse transpressional flow characterises higher strain S-tectonite mylonite within similar to1 km of the Alpine Fault. These relationships provide insight into the kinematics of flow and distribution of strain in the hangingwall of the Alpine Fault and place constraints on numerical mechanical models for the exhumation of these mid-crustal rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Using synchrotron X-ray grazing incidence diffraction, superlattice structures have been observed to develop in Langmuir-Blodgett films of cadmium arachidate as the temperature is raised. The previously reported superstructure in the stacked lamellae at room temperature changes at about 70 degreesC and there are further changes at about 90 and 103 degreesC before the major phase transition from stacked lamellae to hexagonally packed rods occurs at 107 degreesC (Langmuir 1997, 13, 1602). Between 70 and 103 degreesC there is a 1 x 10 one-dimensional in-plane superstructure, which is commensurate with the local structure and has an interlayer shift along [01] by a distance of b (of the local structure) at lower temperatures, and a further shift at about 90 degreesC. At lower (
Resumo:
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.
Resumo:
In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N-sl, the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder mu(2)(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N-sl; and (iii) the topological disorder mu(2)(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, Delta mu(2)(N), decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) Delta mu(2)(N) increased with Delta N-sl under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.
Resumo:
The minimum inhibitory concentration and post-antibiotic effects of an antimicrobial agent are parameters to be taken into consideration when determining its dosage schedules. The in vitro post-antibiotic effects on cell surface hydrophobicity and bacterial adherence were examined in one strain of group B streptococci. Exposure of the microorganism for 2 h at 37 °C to 1 x MIC of penicillin induced a PAE of 1.1 h. The cell surface charge of the Streptococcus was altered significantly during the post-antibiotic phase as shown by its ability to bind to xylene: hydrophobicity was decreased. Bacterial adherence to human buccal epithelial cells was also reduced. The results of the present investigation indicate that studies designed to determine therapeutic regimens should evaluate the clinical significance of aspects of bacterial physiology during the post-antibiotic period.
Resumo:
Os modelos a ser analisados pelo Método de Elementos Finitos são cada vez mais complexos e, nos tempos que correm, seria impensável realizar tais análises sem um apoio computorizado. Existe para esta finalidade uma vasta gama de programas que permitem realizar tarefas que passam pelo desenho de estruturas, análise estática de cargas, análise dinâmica e vibrações, visualização do comportamento físico (deformações) em tempo real, que permitem a otimização da estrutura. Sob o pretexto de permitir a qualquer utilizador uma análise de estruturas simples com o Método dos Elementos Finitos, surge esta tese, onde se irá criar de raiz um programa com interface gráfica no ambiente MATLAB® para análise de estruturas simples com dois tipos de elemento finito, triangular de deformação constante e quadrangular de deformação linear. O software desenvolvido, verificado por comparação com um software comercial dedicado para o efeito, efetua malhagem com elementos bidimensionais triangulares e quadriláteros e resolve modelos arbitrados pelo Método de Elementos Finitos, representando estes resultados visualmente e em formato tabular.
Resumo:
The present investigation was performed to evaluate the susceptibility of seven clones isolated from the highly resistant Colombian strains, prototype of Biodeme Type III. Seven clones previously obtained, showed a phenotypic homogeneity and high similarity with the parental strain. Eight groups of 30 mice were inoculated with one of seven clones or the parental strain; 20 were treated with benznidazole (100mg/kg/day) and 10 were untreated controls. Cure evaluations were done by parasitological and serological tests and PCR. Cure rates varied from 0% (null) to 16.7%. Correlation between positivity of parasitological and serological tests with positive PCR reached 37%. The results demonstrated the high resistance of the clones, suggesting the predominance of a highly resistant principal clone in this strain. The findings apparently indicate that the possibility of cure is minimal for patients infected with this biodeme; a fact that could affect the control of Chagas' disease through treatment of chronically infected people.
Numerical Assessment of the out-of-plane response of a brick masonry structure without box behaviour
Resumo:
This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the
Resumo:
In this work the dielectric properties and ferromagnetic resonance of Polyvinylidene- uoride embedded with 10 wt. % of NiFe2O4 or Ni0.5Zn0.5Fe2O4 nanoparticles are presented. The mechanisms of the dielectric relaxation in these two composites do not differ from each other. For more precise characterization of the dielectric relaxation, a two dimensional distribution of relaxation times was calculated from the temperature dependencies of the complex dielectric permittivity. The results obtained from the 2D distribution and the mean relaxation time are found to be consistent. The dynamics of the dielectric permittivity is described by the Arrhenius law. The energy and attempt time of the dielectric relaxators lie in a narrow energy and time region thus proving that the single type chains of polymer are responsible for a dispersion. The magnetic properties of the composites were investigated using the fer- romagnetic resonance. A single resonance line was observed for both samples. From the temperature dependence (100 K - 310 K) of the resonance eld and linewidth, the origin of the observed line was attributed to the NiFe2O4 and Ni0.5Zn0.5Fe2O4 superparamagnetic nanoparticles. By measuring lms at dif- ferent orientations with respect to the external magnetic eld, the angular dependence of the resonance was observed, indicating the magnetic dipolar in-plane interactions.
Resumo:
Films of BaFe12O19/P(VDF-TrFE) composites with 5, 10 and 20 %wt Barium ferrite content have been fabricated. BaFe12O19 microparticles have the shape of thin hexagonal platelets, the easy direction of magnetization remaining along the c axis, which is perpendicular to the plates. This fact allows for ferrite particles orientation in-plane and out-of-plane within the composite films, as confirmed by measured hysteresis loops. While the in-plane induced magnetoelectric effect (ME) is practically zero, these composite films show a good out-of-plane magnetoelectric effect. with maximum ME coupling coefficient changes of 3, 17 and 2 mV/cm.Oe for the 5, 10 and 20%wt Barium ferrite content films, respectively. We infer that this ME behavior appears as driven by the magnetization process arising when we applied the external magnetic field. We have also measured linear and reversible magnetoelectric effect for low applied bias field, when magnetization process is still reversible.
Resumo:
Drosophila willistoni (Sturtevant, 1916) is a species of the willistoni group of Drosophila having wide distribution from the South of USA (Florida) and Mexico to the North of Argentina. It has been subject of many evolutionary studies within the group, due to its considerable ability to successfully occupy a wide range of environments and also because of its great genetic variability expressed by different markers. The D. willistoni 17A2 strain was collected in 1991 in the state of Rio Grande do Sul, Brazil (30°05'S, 51°39'W), and has been maintained since then at the Drosophila laboratory of UFRGS. Different to the other D. willistoni strains maintained in the laboratory, the 17A2 strain spontaneously produced mutant males white-like (white eyes) and sepia-like (brown eyes) in stocks held at 17°C. In order to discover if this strain is potentially hypermutable, we submitted it to temperature stress tests. Eighteen isofemale strains were used in our tests and, after the first generation, all the individuals produced in each strain were maintained at 29°C. Different phenotype alterations were observed in subsequent generations, similar to mutations already well characterized in D. melanogaster (white, sepia, blistered and curly). In addition, an uncommon phenotype alteration with an apparent fusion of the antennae was observed, but only in the isofemale line nº 31. This last alteration has not been previously described as a mutation in the D. melanogaster species. Our results indicate that the D. willistoni 17A2 strain is a candidate for hypermutability, which presents considerable cryptic genetic variability. Different factors may be operating for the formation of this effect, such as the mobilization of transposable elements, effect of inbreeding and alteration of the heat-shock proteins functions.
Resumo:
This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.
Resumo:
An antagonistic effect of voriconazole on the fungicidal activity of sequential doses of amphotericin B has previously been demonstrated in Candida albicans strains susceptible to voriconazole. Because treatment failure and the need to switch to other antifungals are expected to occur more often in infections that are caused by resistant strains, it was of interest to study whether the antagonistic effect was still seen in Candida strains with reduced susceptibility to voriconazole. With the hypothesis that antagonism will not occur in voriconazole-resistant strains, C. albicans strains with characterized mechanisms of resistance against voriconazole, as well as Candida glabrata and Candida krusei strains with differences in their degrees of susceptibility to voriconazole were exposed to voriconazole or amphotericin B alone, to both drugs simultaneously, or to voriconazole followed by amphotericin B in an in vitro kinetic model. Amphotericin B administered alone or simultaneously with voriconazole resulted in fungicidal activity. When amphotericin B was administered after voriconazole, its activity was reduced (median reduction, 61%; range, 9 to 94%). Levels of voriconazole-dependent inhibition of amphotericin B activity differed significantly among the strains but were not correlated with the MIC values (correlation coefficient, -0.19; P = 0.65). Inhibition was found in C. albicans strains with increases in CDR1 and CDR2 expression but not in the strain with an increase in MDR1 expression. In summary, decreased susceptibility to voriconazole does not abolish voriconazole-dependent inhibition of the fungicidal activity of amphotericin B in voriconazole-resistant Candida strains. The degree of interaction could not be predicted by the MIC value alone.