998 resultados para immunoglobulin genes
Resumo:
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and Delta calA mutant strains. Our results showed that the mitochondrial copy number is reduced in the Delta calA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the Delta calA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Two hundred fifty-seven nalidixic acid-resistant enterobacterial isolates were collected in a Brazilian community from January 2000 to May 2005 to determine the prevalence of plasmid-encoded extended-spectrum beta-lactamases. The bla(CTX-M) genetic environment was determined by polymerase chain reaction and sequencing. Eleven isolates (4.2%) harbored a bla(CTX-M-2) gene, 3 isolates bla(CTX-M-9), 2 isolates bla(CTX-M-8), and 6 isolates bla(SHV-5). Two novel bla(CTX-M-2) variants, namely, bla(CTX-M-74) and bla(CTX-M-75), were identified. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.
Resumo:
We used the expressed sequenced tags (ESTs) approach to study the genome of the cattle tick Boophilus microplus. One hundred and forty-two of our 234 unique ESTs were from genes not previously identified from ticks, mites or any other arachnids. The largest class of identified ESTs (29%) was from genes involved in transcription and translation. Ninety-one ESTs (39% of all ESTs) did not match any sequences in international databases; some of these may be specific to ticks. Thirteen percent of our ESTs were from ribosomal proteins and two ESTs were for genes implicated in resistance to pesticides. (C) 1998 Chapman & Hall Ltd.
Resumo:
Febrile seizures affect approximately 3% of all children under six years of age and are by far the most common seizure disorder(1). A small proportion of children with febrile seizures later develop ongoing epilepsy with afebrile seizures(2). Segregation analysis suggests the majority of cases have complex inheritance(3) but rare families show apparent autosomal dominant: inheritance. Two putative loci have been mapped (FEB1 and FEB2), but specific genes have not yet been identified(4,5). We recently described a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS(+)), in which many family members have seizures with fever that may persist beyond six years of age or be associated with afebrile generalized seizures(6). We now report linkage, in another large GEFS(+) family, to chromosome region 19q13.1 and identification of a mutation in the voltage-gated sodium (Na+)-channel beta 1 subunit gene (SCN1B). The mutation changes a conserved cysteine residue disrupting a putative disulfide bridge which normally maintains an extracellular immunoglobulin-like fold. Go-expression of the mutant pr subunit with a brain Na+-channel alpha subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele. This observation develops the theme that idiopathic epilepsies are a family of channelopathies and raises the possibility of involvement of other Na+-channel subunit genes in febrile seizures and generalized epilepsies with complex inheritance patterns.
Resumo:
Carbohydrate-deficient transferrin (CDT) has emerged as the best new marker for alcohol abuse. Recently plasma immunoglobulin A (IgA) reactivity with acetaldehyde (AcH)-modified proteins, or the modified proteins per se, have been proposed as a markers for high levels of alcohol consumption. In this study, we have compared CDT, IgA reactivity with AcH adducts (IgA ASR), and AcH-modified albumin with conventional markers of high alcohol intake in groups with well-defined drinking histories, The plasma activity of ALT, AST, and gamma-glutamyltransferase increased steadily with increasing alcohol consumption, CDT and AcH-modified albumin showed a similar pattern, whereas IgA ASR appeared only to be elevated after a threshold level of consumption had been reached, Neither CDT IgA ASR or AcH-modified albumin correlated strongly with any of the conventional markers or each other. This study shows that CDT, IgA ASR, AcH-modified albumin, and the conventional markers are not related, but suggests that the concurrent use of CDT and IgA ASR may lead to better identification of high alcohol intake.
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
We describe the isolation and characterisation of two putatively new acetylcholinesterase genes from the African cattle ticks Boophilus decoloratus and Rhipicephalus appendiculatus. The nucleotide sequences of these genes had 93% homology to each other and 95% and 91% identity, respectively, to the acetylcholinesterase gene from an Australian strain of another cattle tick, Boophilus microplus. Translation of the nucleotide sequences revealed putative amino acids that are essential for acetylcholinesterase activity: the active site serine, and the histidine and glutamate residues that associate with this serine to form the catalytic triad. All known acetylcholinesterases have three sets of cysteines that form disulfide bonds; however, the acetylcholinesterase genes of these three species of ticks encode only two sets of cysteines. Acetylcholinesterases of B. microplus from South Africa, Zimbabwe, Kenya and Mexico had 98-99% identity with acetylcholinesterase from B. microplus from Australia, whereas acetylcholinesterase from B. microplus from Indonesia was identical to that from Australia. Preliminary phylogenetic analyses surprisingly indicate that the acetylcholinesterases of ticks are closer phylogenetically to acetylcholinesterases of vertebrates than they are to those of other arthropods. (C) 1999 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The study of 'molecular mimicry' or 'genetic piracy', with respect to the utilisation of cellular genes captured and modified during the course of virus evolution, has been an area of increasing research with the expansion in virus genome sequencing. Examples of cellular immunomodulatory genes which have been captured from hosts have been identified in a number of viruses. This review concentrates upon studies of murine cytomegalovirus (MCMV), investigating the functions of viral genes homologous to G protein-coupled receptors, MHC class I and chemokines, The study of recombinant MCMV engineered with specific disruptions of these genes has revealed their significance during virus replication and dissemination within the host, In the case of the latter two classes of genes, evidence suggests they interfere with cellular immune responses, although the detailed mechanisms underlying this interference have yet to be delineated. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Squamous differentiation of keratinocytes is associated with decreases in E2F-1 mRNA expression and E2F activity, and these processes are disrupted in squamous cell carcinoma cell lines. We now show that E2F-1 mRNA expression is increased in primary squamous cell carcinomas of the skin relative to normal epidermis, To explore the relationship between E2F-1 and squamous differentiation further, we examined the effect of altering E2F activity in primary human keratinocytes induced to differentiate. Promoter activity for the proliferation-associated genes, cdc2 and keratin 14, are inhibited during squamous differentiation. This inhibition can be inhibited by overexpression of E2F-1 in keratinocytes, Overexpression of E2F-1 also suppressed the expression of differentiation markers (transglutaminase type 1 and keratin 10) in differentiated keratinocytes, Blocking E2F activity by transfecting proliferating keratinocytes with dominant negative E2F-1 constructs inhibited the expression of cdc2 and E2F-1, but did not induce differentiation. Furthermore, expression of the dominant negative construct in epithelial carcinoma cell lines and normal keratinocytes decreased expression from the cdc2 promoter. These data indicate that E2F-1 promotes keratinocyte proliferation-specific marker genes and suppresses squamous differentiation-specific marker genes. Moreover, these data indicate that targeted disruption of E2F-1 activity may have therapeutic potential for the treatment of squamous carcinomas.
Resumo:
Transposon mutagenesis and complementation studies previously identified a gene (xabB) for a large (526 kDa) polyketide-peptide synthase required for biosynthesis of albicidin antibiotics and phytotoxins in the sugarcane leaf scald pathogen Xanthomonas albilineans. A cistron immediately downstream from xabB encodes a polypeptide of 343 aa containing three conserved motifs characteristic of a family of S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases. Insertional mutagenesis and complementation indicate that the product of this cistron (designated xabC) is essential for albicidin production, and that there is no other required downstream cistron. The xab promoter region is bidirectional, and insertional mutagenesis of the first open reading frame (ORF) in the divergent gene also blocks albicidin biosynthesis. This divergent ORF (designated thp) encodes a protein of 239 aa displaying high similarity to several IS21-like transposition helper proteins. The thp cistron is not located in a recognizable transposon, and is probably a remnant from a past transposition event that may have contributed to the development of the albicidin biosynthetic gene cluster. Failure of 'in trans' complementation of rhp indicates that a downstream cistron transcribed with thp is required for albicidin biosynthesis. (C) 2000 Elsevier Science B.V. All rights reserved.