951 resultados para immunocompromised host
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
The gregarious braconid wasp Cotesia congregata parasitizes host larvae of Manduca sexta, and several other sphingid species. Parasitism induces host immunosuppression due to the disruptive action of the wasp's polydnavirus (PDV) on host blood cells. During the initial stages of parasitism, these cells undergo apoptosis followed by cell clumping, which clears the hemolymph of a large number of cells. In this study, the persistence and expression of Cotesia congregata PDV (CcPDV) were examined using Southern and Nor-them blots, respectively. Digoxygenin-labelled total polydnaviral DNA was used to probe genomic DNA isolated from fat body and brains of hosts with emerged wasps taken 6 days following egress of the parasitoids, and significant cross-hybridization between the host fat body genomic DNA with viral DNA was seen. Thus, the virus persists in the host for the duration of parasitism. even during the post-emergence period, and may even be integrated in the host caterpillar DNA. Viral gene expression was examined using Northern blots and probes to the Cotesia rubecula CrV1 homolog, and the CrV1-like mRNAs were expressed as early as 4 h post-parasitization for at least 72 h and faint hybrization is even seen at the time the wasps eclose. In contrast, in Pieris rapae larvae the CrV1 transcript is expressed only for a brief time, during which time hemocyte function is disrupted. The effect is transitory, and hemocytes regain their normal functions after the parasites emerge as first instars. The genome of CcPDV contains one copy of the CrV1-like homolog as shown on Southern blots of viral genomic DNA. In conjunction with our earlier studies of the PDV-encoded early protein 1, the current work suggests multiple viral transcripts are produced following parasitization of the host. and likely target host hemocytes to induce their apoptosis, thereby preventing encapsulation of the parasitoid's eggs. Whether viral DNAs are integrated in the host's genomic DNA remains to be proven, but our results provide preliminary evidence that viral DNAs are detected in the host's fat body cells examined at the time of wasp ernergence and several days later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In some insects, the finding of oviposition substrate triggers the uptake into oocytes of yolk proteins that are stored in the fat body during post-embryonic development. The main host of the bean weevil Zabrotes subfasciatus (Coleoptera; Chrysomelidae; Bruchinae; Amblycerini), in which larval resources are the sole source for future egg maturation, is Phaseolus vulgaris. Despite not feeding as adults, females of this species are able to lay eggs after encountering host seeds but it is not known how females react to changes in the availability of bean seeds. In the present study, the behaviour of Z. subfasciatus facing two very different environments for oviposition is investigated, as well as how this influences offspring fitness. The results obtained show that females of Z. subfasciatus react to variations in the availability of seeds belonging to the same host species by adjusting egg size and number. Females on low bean seed density lay larger and fewer eggs than those on high bean seed density, demonstrating a trade-off between these reproductive traits. Moreover, females can adjust egg size to changing levels of host availability during the first 4 days of their oviposition period. Although no difference in offspring weight is found, those from small eggs (low competition environment) result in larger adults. No response to selection on these traits after rearing beetles on the same host for 40 generations is observed. This unresponsiveness may indicate that beetle populations behave according to their reaction norm that already allows rapid adaptation to a varying amount of host-seed availability and better exploitation of the environments of this widespread stored-seed pest.
Resumo:
It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus. However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largely unknown. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different populations (reared for similar to 30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts, indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.
Resumo:
The diversity and community structures of symbiotic dinoflagellates are described from reef invertebrates in southern and central provinces of the Great Barrier Reef (GBR), Australia, and Zamami Island, Okinawa, Japan. The symbiont assemblages from region to region were dominated by Clade C Symbiodinium spp. and consisted of numerous host-specific and/or rare types (specialists), and several types common to many hosts (generalists). Prevalence in the host community among certain host-generalist symbionts differed between inshore and offshore environments, across latitudinal (central versus southern GBR) gradients, and over wide geographic ranges (GBR versus Okinawa). One particular symbiont (C3h) from the GBR had a dramatic shift in dominance. Its prevalence ranged from being extremely rare, or absent on high-latitude reefs to dominating the scleractinian diversity on a mid-latitude inshore reef. These changes occurred among coral fauna whose larvae must acquire symbionts from environmental sources (horizontal symbiont acquisition). Such differences did not occur among 'vertical transmitters' such as Porites spp., Montipora spp. and pocilloporids (corals that directly transmit symbionts to their offspring) or among those hosts displaying 'horizontal acquisition', but that associate with specific symbionts. Most host-specialized types were found to be characteristic of a particular geographic region (i.e. Okinawa versus Central GBR versus Southern GBR). The mode of symbiont acquisition may play an important role in how symbiont composition may shift in west Pacific host communities in response to climate change. There is no indication that recent episodes of mass bleaching have provoked changes in host-symbiont combinations from the central GBR.
Resumo:
Foraging adults of phytophagous insects are attracted by host-plant volatiles and supposedly repelled by volatiles from non-host plants. In behavioural control of pest insects, chemicals derived from non-host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non-host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non-host-plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non-host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non-host-plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host-plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.
Resumo:
Original antigenic sin is failure to mount effective immunity to virus variants in a previously virus infected host. We have previously shown that prior immunity to a virus capsid protein inhibits induction from naive CD8 T cells of an IFN-g response to a MHC class I restricted epitope linked to the capsid protein, following immunisation with a capsid expressing the class I restricted epitope. The inhibition is independent of pre-existing antibody to the viral capsid, and the inhibition is observed in animal lacking B cells. CD8 restricted viral capsid specific T cell responses are also not required, but the inhibition is not observed in IL10 knockout mice. We now demonstrate that capsid antigen primed CD4+ T cells secrete IL10 in response to capsid antigen presented by DC, and deviate CD8 cells specific for the linked MHC Class I restricted epitope from IFN-g production to IL-5 production. Neutralizing IL10, either in vitro or in vivo, restores induction following immunisation of an antigen specific IFN-g response to an MHC Class I restricted epitope. This finding demonstrates a strategy for overcoming bias towards a Tc2 response to MHC Class I epitopes upon immunisation of a host already primed to antigen, facilitating immunotherapy for chronic viral infection or cancer
Resumo:
Infections caused by the yeast Candida albicans represent an increasing threat to debilitated and immunosuppressed patients, and neutropenia is an important risk factor. Monoclonal antibody depletion of neutrophils in mice was used to study the role of these cells in host resistance. Ablation of neutrophils increased susceptibility to both systemic and vaginal challenge. The fungal burden in the kidney increased threefold on day 1, and 100-fold on day 4, and infection was associated with extensive tissue destruction. However, a striking feature of the disseminated disease in neutrophil-depleted animals was the altered pattern of organ involvement. The brain, which is one of the primary target organs in normal mice, was little affected. There was a threefold increase in the number of organisms recovered from the brains of neutrophil-depleted mice on day 4 after infection, but detectable abscesses were rare. In contrast, the heart, which in normal mice shows only minor lesions, developed severe tissue damage following neutrophil depletion. Mice deficient in C5 demonstrated both qualitative and quantitative increases in the severity of infection after neutrophil depletion when compared with C5-sufficient strains. The results are interpreted as reflecting organ-specific differences in the mechanisms of host resistance.
Resumo:
Tissue damage in the kidney and brain after systemic infection with Candida albicans was examined in recombinant inbred strains (AKXL) derived from AKR and C57/L progenitors. Nine of the 15 strains showed mild (C57/L-like) tissue damage. Of the remainder, two strains developed lesions comparable to the AKR parental strain, whereas four exhibited a much move severe pattern of tissue damage. This was characterized by pronounced mycelial growth in the brain, and gross oedema of the kidney, with extensive fungal colonization and marked tissue destruction. The presence of the null allele of the haemolytic complement gene (Hc) may be necessary but not sufficient, for the expression of the very severe lesions. The results were interpreted as reflecting the actions of two independent genes, which have been designated Carg1 and Carg2 (Candida albicans resistance genes 1 and 2). (C) 1997 Academic Press Limited.
Resumo:
Galectin-3 is a p-galactoside-binding lectin implicated in the fine-tuning of innate immunity. Rhodococcus equi, a facultative intracellular bacterium of macrophages, causes severe granulomatous bronchopneumonia in young horses and immunocompromised humans. The aim of this study is to investigate the role of galectin-3 in the innate resistance mechanism against R. equi infection. The bacterial challenge of galectin-3-deficient mice (gal3(-/-)) and their wild-type counterpart (gal3(+/+)) revealed that the LD50 for the gal3(-/-) mice was about seven times higher than that for the gal3(+/+) mice. When challenged with a sublethal dose, gal3(-/-) mice showed lower bacteria counts and higher production of IL-12 and IFN-gamma production, besides exhibiting a delayed although increased inflammatory reaction. Gal3(-/-) macrophages exhibited a decreased frequency of bacterial replication and survival, and higher transcript levels of IL-1 beta, IL-6, IL-10, TLR2 and MyD88. R. equi-infected gal3(+/+) macrophages showed decreased expression of TLR2, whereas R. equi-infected gal3(-/-) macrophages showed enhanced expression of this receptor. Furthermore, galectin-3 deficiency in macrophages may be responsible for the higher IL-1 beta serum levels detected in infected gal3(-/-) mice. Therefore galectin-3 may exert a regulatory role in innate immunity by diminishing IL-1 beta production and thus affecting resistance to R. equi infection.
Resumo:
Although prophylaxis is current practice, there are no randomized controlled studies evaluating preoperative antimicrobial prophylaxis in dental procedures in patients immunocompromised by chemotherapy or organ transplants. To evaluate prophylaxis in dental-invasive procedures in patients with cancer or solid organ transplants, 414 patients were randomized to receive one oral 500-mg dose 2 hours before the procedure (1-dose group) or a 500-mg dose 2 hours before the procedure and an additional dose 8 hours later (2-dose group). Procedures were exodontia or periodontal scaling/root planing. Follow-up was 4 weeks. No deaths or surgical site infections occurred. Six patients (1.4%) presented with use of pain medication > 3 days or hospitalization during follow-up: 4 of 207 (2%) in the 1-dose group and 2 of 207 (1%) in the 2-dose group (relative risk, 2.02; 95% confidence interval, 0.37-11.15). In conclusion, no statistically significant difference occurred in outcome using 1 or 2 doses of prophylactic amoxicillin for invasive dental procedures in immunocompromised patients.
Resumo:
Compare the clinicoradiological presentation of urogenital tuberculosis (UGT) between immunocompromised and nonimmunocompromised patients. Eighty patients diagnosed with UGT were divided into two groups: eight immunocompromised patients (four with acquired immunodeficiency syndrome [AIDS], and four renal transplant patients on immunosuppressive therapy) and 72 nonimmunocompromised patients. The groups were compared as for age, signs and symptoms, diagnostic approach, pattern of urogenital organ involvement, and early specific mortality (within 6 months from diagnosis). AIDS patients were younger (median age 26 years, range 16-38 years), and renal transplant patients were older (median age 51.5 years, range 45-57 years), compared with the nonimmunocompromised subjects (median age 35 years, range 12-75 years). Immunocompromised patients had greater frequency of fever (87.5% versus 43.1%, P = 0.024), lower frequency of storage symptoms (37.5% versus 76.4%, P = 0.033), shorter length of disease (< 6 months: 87.5% versus 2.8%, P < 0.001), and larger frequency of disseminated tuberculosis (62.5% versus 18.1%, P = 0.012). Predominantly parenchymatous renal involvement was more frequent in immunocompromised patients (87.5% versus 6.2%, P < 0.001), who also had lower frequency of stenosis of the collecting system (12.5% versus 93.8%, P < 0.001) and contracted bladder (12.5% versus 65.3%, P = 0.001). UGT has a different clinicoradiological presentation in immunocompromised patients, with predominance of systemic symptoms, disseminated tuberculosis, multiple parenchymatous renal foci, and lower frequency of lesions of the collecting system. In the context of immunosuppression, UGT behaves as a severe bacterial infection, with bacteremia and visceral metastatic foci.