938 resultados para ideological continuum
Resumo:
info:eu-repo/semantics/published
Resumo:
A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.
Resumo:
The present work uses the discrete element method (DEM) to describe assemblies of particulate bulk materials. Working numerical descriptions of entire processes using this scheme are infeasible because of the very large number of elements (1012 or more in a moderately sized industrial silo). However it is possible to capture much of the essential bulk mechanics through selective DEM on important regions of an assembly, thereafter using the information in continuum numerical descriptions of particulate processes. The continuum numerical model uses population balances of the various components in bulk solid mixtures. It depends on constitutive relationships for the internal transfer, creation and/or destruction of components within the mixture. In this paper we show the means of generating such relationships for two important flow phenomena – segregation whereby particles differing in some important property (often size) separate into discrete phases, and degradation, whereby particles break into sub-elements, through impact on each other or shearing. We perform DEM simulations under a range of representative conditions, extracting the important parameters for the relevant transfer, creation and/or destruction of particles in certain classes within the assembly over time. Continuum predictions of segregation and degradation using this scheme are currently being successfully validated against bulk experimental data and are beginning to be used in schemes to improve the design and operation of bulk solids process plant.
Resumo:
In this paper, the application of a continuum model is presented, which deals with the discharge of multi-component granular mixtures in core flow mode. The full model description is given (including the constitutive models for the segregation mechanism) and the interactions between particles at the microscopic level are parametrised in order to predict the development of stagnant zone boundaries during core flow discharges. Finally, the model is applied to a real industrial problem and predictions are made for the segregation patterns developed during mixture discharge in core flow mode.
Resumo:
Species size distributions for metazoan benthic invertebrates conform to the highly conservative bimodal pattern, regardless of the sieve mesh sizes or numbers of sieves used in their extraction. This pattern is not an artefact of sampling a size continuum as suggested by computer simulations using just 2 fixed mesh sizes in Bett (2013; Mar Ecol Prog Ser 487:1-6). Meiobenthos and macrobenthos are coherent entities, each with a distinct suite of functional attributes, and should not be regarded as a single unit for ecological modelling purposes.
Resumo:
The continuum distorted-wave eikonal-initial-state (CDW-EIS) theory of Crothers and McCann (Crothers DSF and McCann JF, 1983 J. Phys. B: At. Mol. Opt. Phys. 16 3229 ) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS, to incorporate the azimuthal ange dependence into the final-state wavefunction. This is accomplished by the analytic continuation of hydrogenic-like wavefunctions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 ke V u^{-1}, the total CDW-EIS ionization cross section falls off, with decreasing energy, too quickly in comparison with experimental data by Crothers and McCann. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment, by including contributions from non-zero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it.
Resumo:
Simple electron capture processes are studied using an orthonormal two state continuum-distorted-wave (CDW) basis. The suitability of the basis set is tested by comparing predictions for total and differential cross sections with available experimental data. Overall good agreement is obtained and the authors conclude that a relatively small CDW basis set may be suitable to model a wide variety of low-energy collisions if the members of this extended set are astutely chosen.
Resumo:
The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Measurements of electron velocity distributions emitted at 0degrees for collisions of 10- and 20-keV H+ incident ions on H-2 and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities.
Resumo:
A refined theoretical approach has been developed to study the double-differential cross sections (DDCS's) in proton-helium collisions as a function of the ratio of ionized electron velocity to the incident proton velocity. The refinement is done in the present coupled-channel calculation by introducing a continuum distorted wave in the final state coupled with discrete states including direct as well as charge transfer channels. It is confirmed that the electron-capture-to-the-continuum (ECC) peak is slightly shifted to a lower electron velocity than the equivelocity position. Comparing measurements and classical trajectory Monte Carlo (CTMC) calculations at 10 and 20 keV proton energies, excellent agreement of the ECC peak heights is achieved at both energies. However, a minor disagreement in the peak positions between the present calculation and the CTMC results is noted. A smooth behavior of the DDCS is found in the present calculation on both sides of the peak whereas the CTMC results show some oscillatory behavior particularly to the left of the peak, associated with the statistical nature of CTMC calculations.