958 resultados para iaas, anonymous cloud, p2p, anonymizing network, gossip


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Linked Data initiative offers a straight method to publish structured data in the World Wide Web and link it to other data, resulting in a world wide network of semantically codified data known as the Linked Open Data cloud. The size of the Linked Open Data cloud, i.e. the amount of data published using Linked Data principles, is growing exponentially, including life sciences data. However, key information for biological research is still missing in the Linked Open Data cloud. For example, the relation between orthologs genes and genetic diseases is absent, even though such information can be used for hypothesis generation regarding human diseases. The OGOLOD system, an extension of the OGO Knowledge Base, publishes orthologs/diseases information using Linked Data. This gives the scientists the ability to query the structured information in connection with other Linked Data and to discover new information related to orthologs and human diseases in the cloud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-user videoconferencing systems offer communication between more than two users, who are able to interact through their webcams, microphones and other components. The use of these systems has been increased recently due to, on the one hand, improvements in Internet access, networks of companies, universities and houses, whose available bandwidth has been increased whilst the delay in sending and receiving packets has decreased. On the other hand, the advent of Rich Internet Applications (RIA) means that a large part of web application logic and control has started to be implemented on the web browsers. This has allowed developers to create web applications with a level of complexity comparable to traditional desktop applications, running on top of the Operating Systems. More recently the use of Cloud Computing systems has improved application scalability and involves a reduction in the price of backend systems. This offers the possibility of implementing web services on the Internet with no need to spend a lot of money when deploying infrastructures and resources, both hardware and software. Nevertheless there are not many initiatives that aim to implement videoconferencing systems taking advantage of Cloud systems. This dissertation proposes a set of techniques, interfaces and algorithms for the implementation of videoconferencing systems in public and private Cloud Computing infrastructures. The mechanisms proposed here are based on the implementation of a basic videoconferencing system that runs on the web browser without any previous installation requirements. To this end, the development of this thesis starts from a RIA application with current technologies that allow users to access their webcams and microphones from the browser, and to send captured data through their Internet connections. Furthermore interfaces have been implemented to allow end users to participate in videoconferencing rooms that are managed in different Cloud provider servers. To do so this dissertation starts from the results obtained from the previous techniques and backend resources were implemented in the Cloud. A traditional videoconferencing service which was implemented in the department was modified to meet typical Cloud Computing infrastructure requirements. This allowed us to validate whether Cloud Computing public infrastructures are suitable for the traffic generated by this kind of system. This analysis focused on the network level and processing capacity and stability of the Cloud Computing systems. In order to improve this validation several other general considerations were taken in order to cover more cases, such as multimedia data processing in the Cloud, as research activity has increased in this area in recent years. The last stage of this dissertation is the design of a new methodology to implement these kinds of applications in hybrid clouds reducing the cost of videoconferencing systems. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this study, resulting in useful information from the different stages of the implementation of videoconferencing systems in Cloud Computing systems. RESUMEN Los sistemas de videoconferencia multiusuario permiten la comunicación entre más de dos usuarios que pueden interactuar a través de cámaras de video, micrófonos y otros elementos. En los últimos años el uso de estos sistemas se ha visto incrementado gracias, por un lado, a la mejora de las redes de acceso en las conexiones a Internet en empresas, universidades y viviendas, que han visto un aumento del ancho de banda disponible en dichas conexiones y una disminución en el retardo experimentado por los datos enviados y recibidos. Por otro lado también ayudó la aparación de las Aplicaciones Ricas de Internet (RIA) con las que gran parte de la lógica y del control de las aplicaciones web comenzó a ejecutarse en los mismos navegadores. Esto permitió a los desarrolladores la creación de aplicaciones web cuya complejidad podía compararse con la de las tradicionales aplicaciones de escritorio, ejecutadas directamente por los sistemas operativos. Más recientemente el uso de sistemas de Cloud Computing ha mejorado la escalabilidad y el abaratamiento de los costes para sistemas de backend, ofreciendo la posibilidad de implementar servicios Web en Internet sin la necesidad de grandes desembolsos iniciales en las áreas de infraestructuras y recursos tanto hardware como software. Sin embargo no existen aún muchas iniciativas con el objetivo de realizar sistemas de videoconferencia que aprovechen las ventajas del Cloud. Esta tesis doctoral propone un conjunto de técnicas, interfaces y algoritmos para la implentación de sistemas de videoconferencia en infraestructuras tanto públicas como privadas de Cloud Computing. Las técnicas propuestas en la tesis se basan en la realización de un servicio básico de videoconferencia que se ejecuta directamente en el navegador sin la necesidad de instalar ningún tipo de aplicación de escritorio. Para ello el desarrollo de esta tesis parte de una aplicación RIA con tecnologías que hoy en día permiten acceder a la cámara y al micrófono directamente desde el navegador, y enviar los datos que capturan a través de la conexión de Internet. Además se han implementado interfaces que permiten a usuarios finales la participación en salas de videoconferencia que se ejecutan en servidores de proveedores de Cloud. Para ello se partió de los resultados obtenidos en las técnicas anteriores de ejecución de aplicaciones en el navegador y se implementaron los recursos de backend en la nube. Además se modificó un servicio ya existente implementado en el departamento para adaptarlo a los requisitos típicos de las infraestructuras de Cloud Computing. Alcanzado este punto se procedió a analizar si las infraestructuras propias de los proveedores públicos de Cloud Computing podrían soportar el tráfico generado por los sistemas que se habían adaptado. Este análisis se centró tanto a nivel de red como a nivel de capacidad de procesamiento y estabilidad de los sistemas. Para los pasos de análisis y validación de los sistemas Cloud se tomaron consideraciones más generales para abarcar casos como el procesamiento de datos multimedia en la nube, campo en el que comienza a haber bastante investigación en los últimos años. Como último paso se ideó una metodología de implementación de este tipo de aplicaciones para que fuera posible abaratar los costes de los sistemas de videoconferencia haciendo uso de clouds híbridos. Finalmente en la tesis se abre una discusión sobre las conclusiones obtenidas a lo largo de este amplio estudio, obteniendo resultados útiles en las distintas etapas de implementación de los sistemas de videoconferencia en la nube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing has seen an impressive growth in recent years, with virtualization technologies being massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from the execution platform and focus only on the functionality. There are several public PaaS offerings available, but currently no private PaaS solution is ready for production environments. To fill this gap a new solution must be developed. In this paper we present a key element for enabling this model: a cloud repository based on the OSGi component model. The repository stores, manages, provisions and resolves the dependencies of PaaS software components and services. This repository can federate with other repositories located in the same or different clouds, both private and public. This way, dependencies can be fulfilled collaboratively, and new business models can be implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Video on Demand (VoD) service is becoming a dominant service in the telecommunication market due to the great convenience regarding the choice of content items and their independent viewing time. However, it comes with the downsides of high server storage and capacity demands because of the large variety of content items and the high amount of traffic generated for serving all requests. Storing part of the popular contents on the peers brings certain advantages but, it still has issues regarding the overall traffic in the core of the network and the scalability. Therefore, we propose a P2P assisted model for streaming VoD contents that takes advantage of the clients unused uplink and storage capacity to serve requests of other clients and we present popularity based schemes for distribution of both the popular and unpopular contents on the peers. The proposed model and the schemes prove to reduce the streaming traffic in the core of the network, improve the responsiveness of the system and increase its scalability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Video on Demand (VoD) service is becoming a dominant service in the telecommunication market due to the great convenience regarding the choice of content items and their independent viewing time. However, due to its high traffic demand nature, the VoD streaming systems are faced with the problem of huge amounts of traffic generated in the core of the network, especially for serving the requests for content items that are not in the top popularity range. Therefore, we propose a peer assisted VoD model that takes advantage of the clients unused uplink and storage capacity to serve requests for less popular items with the objective to keep the traffic on the periphery of the network, reduce the transport cost in the core of the network and make the system more scalable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing and, more particularly, private IaaS, is seen as a mature technology with a myriad solutions tochoose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock-in. Several competing and incompatible interfaces and management styles have given even more voice to these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this paper, we propose a management architecture that tries to tackle these problems; it offers a common way of managing several cloud solutions, and an interface that can be tailored to the needs of the user. This management architecture is designed in a modular way, and using a generic information model. We have validated our approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStack

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The size and complexity of cloud environments make them prone to failures. The traditional approach to achieve a high dependability for these systems relies on constant monitoring. However, this method is purely reactive. A more proactive approach is provided by online failure prediction (OFP) techniques. In this paper, we describe a OFP system for private IaaS platforms, currently under development, that combines di_erent types of data input, including monitoring information, event logs, and failure data. In addition, this system operates at both the physical and virtual planes of the cloud, taking into account the relationships between nodes and failure propagation mechanisms that are unique to cloud environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today P2P faces two important challenges: design of mechanisms to encourage users’ collaboration in multimedia live streaming services; design of reliable algorithms with QoS provision, to encourage multimedia providers employ the P2P topology in commercial streaming services. We believe that these two challenges are tightly-related and there is much to be done with respect. This paper proposes a novel monetary incentive for P2P multimedia streaming. The incentive model classifies the users in groups according to the perceived video quality. We apply the model to a streaming system’s billing model in order to evaluate its feasibility and visualize its quantitative effect on the users’ motivation and the provider’s profit. We conclude that monetary incentive can boost up users’ cooperation, loyalty and enhance the overall system integrity and performance. Moreover the model defines the constraints for the provider’s cost and profit when the system is leveraged on the cloud. Considering those constraints, a multimedia content provider can adapt the billing model of his streaming service and achieve desirable discount-profit trade-off. This will moreover contribute to better promotion of the service, across the users on the Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, student dropout rates are a matter of concern among universities. Many research studies, aimed at discovering the causes, have been carried out. However, few solutions, that could serve all students and related problems, have been proposed so far. One such problem is caused by the lack of the "knowledge chain educational links" that occurs when students move onto higher studies without mastering their basic studies. Most regulated studies imparted at universities are designed so that some basic subjects serve as support for other, more complicated, subjects, thus forming a complicated knowledge network. When a link in this chain fails, student frustration occurs as it prevents him from fully understanding the following educational links. In this proposal we try to mitigate these disasters that stem, for the most part, the student?s frustration beyond his college stay. On one hand, we make a dissertation on the student?s learning process, which we divide into a series of phases that amount to what we call the "learning lifecycle." Also, we analyze at what stage the action by the stakeholders involved in this scenario: teachers and students; is most important. On the other hand, we consider that Information and Communication Technologies ICT, such as Cloud Computing, can help develop new ways, allowing for the teaching of higher education, while easing and facilitating the student?s learning process. But, methods and processes need to be defined as to direct the use of such technologies; in the teaching process in general, and within higher education in particular; in order to achieve optimum results. Our methodology integrates, as another actor, the ICT into the "Learning Lifecycle". We stimulate students to stop being merely spectators of their own education, and encourage them to take an active part in their training process. To do this, we offer a set of useful tools to determine not only academic failure causes, (for self assessment), but also to remedy these failures (with corrective actions); "discovered the causes it is easier to determine solutions?. We believe this study will be useful for both students and teachers. Students learn from their own experience and improve their learning process, while obtaining all of the "knowledge chain educational links? required in their studies. We stand by the motto "Studying to learn instead of studying to pass". Teachers will also be benefited by detecting where and how to strengthen their teaching proposals. All of this will also result in decreasing dropout rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distributed computing models typically assume every process in the system has a distinct identifier (ID) or each process is programmed differently, which is named as eponymous system. In such kind of distributed systems, the unique ID is helpful to solve problems: it can be incorporated into messages to make them trackable (i.e., to or from which process they are sent) to facilitate the message transmission; several problems (leader election, consensus, etc.) can be solved without the information of network property in priori if processes have unique IDs; messages in the register of one process will not be overwritten by others process if this process announces; it is useful to break the symmetry. Hence, eponymous systems have influenced the distributed computing community significantly either in theory or in practice. However, every thing in the world has its own two sides. The unique ID also has disadvantages: it can leak information of the network(size); processes in the system have no privacy; assign unique ID is costly in bulk-production(e.g, sensors). Hence, homonymous system is appeared. If some processes share the same ID and programmed identically is called homonymous system. Furthermore, if all processes shared the same ID or have no ID is named as anonymous system. In homonymous or anonymous distributed systems, the symmetry problem (i.e., how to distinguish messages sent from which process) is the main obstacle in the design of algorithms. This thesis is aimed to propose different symmetry break methods (e.g., random function, counting technique, etc.) to solve agreement problem. Agreement is a fundamental problem in distributed computing including a family of abstractions. In this thesis, we mainly focus on the design of consensus, set agreement, broadcast algorithms in anonymous and homonymous distributed systems. Firstly, the fault-tolerant broadcast abstraction is studied in anonymous systems with reliable or fair lossy communication channels separately. Two classes of anonymous failure detectors AΘ and AP∗ are proposed, and both of them together with a already proposed failure detector ψ are implemented and used to enrich the system model to implement broadcast abstraction. Then, in the study of the consensus abstraction, it is proved the AΩ′ failure detector class is strictly weaker than AΩ and AΩ′ is implementable. The first implementation of consensus in anonymous asynchronous distributed systems augmented with AΩ′ and where a majority of processes does not crash. Finally, a general consensus problem– k-set agreement is researched and the weakest failure detector L used to solve it, in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities), and without a complete initial knowledge of the membership.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distributed computing models typically assume every process in the system has a distinct identifier (ID) or each process is programmed differently, which is named as eponymous system. In such kind of distributed systems, the unique ID is helpful to solve problems: it can be incorporated into messages to make them trackable (i.e., to or from which process they are sent) to facilitate the message transmission; several problems (leader election, consensus, etc.) can be solved without the information of network property in priori if processes have unique IDs; messages in the register of one process will not be overwritten by others process if this process announces; it is useful to break the symmetry. Hence, eponymous systems have influenced the distributed computing community significantly either in theory or in practice. However, every thing in the world has its own two sides. The unique ID also has disadvantages: it can leak information of the network(size); processes in the system have no privacy; assign unique ID is costly in bulk-production(e.g, sensors). Hence, homonymous system is appeared. If some processes share the same ID and programmed identically is called homonymous system. Furthermore, if all processes shared the same ID or have no ID is named as anonymous system. In homonymous or anonymous distributed systems, the symmetry problem (i.e., how to distinguish messages sent from which process) is the main obstacle in the design of algorithms. This thesis is aimed to propose different symmetry break methods (e.g., random function, counting technique, etc.) to solve agreement problem. Agreement is a fundamental problem in distributed computing including a family of abstractions. In this thesis, we mainly focus on the design of consensus, set agreement, broadcast algorithms in anonymous and homonymous distributed systems. Firstly, the fault-tolerant broadcast abstraction is studied in anonymous systems with reliable or fair lossy communication channels separately. Two classes of anonymous failure detectors AΘ and AP∗ are proposed, and both of them together with a already proposed failure detector ψ are implemented and used to enrich the system model to implement broadcast abstraction. Then, in the study of the consensus abstraction, it is proved the AΩ′ failure detector class is strictly weaker than AΩ and AΩ′ is implementable. The first implementation of consensus in anonymous asynchronous distributed systems augmented with AΩ′ and where a majority of processes does not crash. Finally, a general consensus problem– k-set agreement is researched and the weakest failure detector L used to solve it, in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities), and without a complete initial knowledge of the membership.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud Agile Manufacturing is a new paradigm proposed in this article. The main objective of Cloud Agile Manufacturing is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new manufacturing paradigm, we call Cloud Agile Manufacturing, and whose principal objective is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.