974 resultados para hydrated lime
Resumo:
Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).
Resumo:
Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.
Resumo:
A lime by-product from the manufacture of acetylene from calcium carbide will be commercially available in Iowa. Since the cost of carbide waste lime f.o.b. source is only about half that of ordinary commercial lime, this material was investigated for potential uses in soil stabilization. The by-product lime is calcium hydroxide in a water slurry with approximately 40% solid concentration. Its effectiveness at stabilizing soils was checked by comparing with commercial high-calcium and dolomitic monohydrate varieties of lime. This was done by soil strength and plasticity tests in addition to studies of the reaction products by X-ray diffraction and chemical methods.
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
There has been a long standing desire to produce thick (up to 500 nm) cryo-sections of fully hydrated cells and tissue for high-resolution analysis in their natural state by cryo-transmission electron microscopy. Here, we present a method that can successfully produce sections (lamellas in FIB-SEM terminology) of fully hydrated, unstained cells from high-pressure frozen samples by focused ion beam (FIB) milling. The samples are therefore placed in thin copper tubes and vitrified by high-pressure freezing. For transfer, handling and subsequent milling, the tubes are placed in a novel connective device (ferrule) that protects the sample from devitrification and contamination and passes through all operation steps. A piezo driven sample positioning stage (cryo-nano-bench, CNB) with three degrees of freedom was additionally developed to enable accurate milling of frozen-hydrated lamellas. With the CNB, high-pressure frozen samples can be milled to produce either thin lamellas (<100 nm), for direct imaging by high-resolution cryo-TEM or thicker lamellas (300-500 nm) for cryo-electron tomography. The sample remains vitreous throughout the process by using the presented tools and methods. The results are an important step towards investigating larger cells and even tissue in there natural state which in the end will enable us to gain better insights into cellular processes.
Resumo:
The objective of this work was to evaluate the response of rangpur lime (Citrus limonia) to arbuscular mycorrhiza (Glomus intraradices), under P levels ranging from low to excessive. Plants were grown in three levels of soluble P (25, 200 and 1,000 mg kg-1), either inoculated with Glomus intraradices or left noninoculated, evaluated at 30, 60, 90, 120 and 150 days after transplanting (DAT). Total dry weight, shoot P concentration and specific P uptake by roots increased in mycorrhizal plants with the doses of 25 and 200 mg kg-1 P at 90 DAT. With 1,000 mg kg-1 P, mycorrhizal plants had a transient growth depression at 90 and 120 DAT, and nonmycorrhizal effects on P uptake at any harvesting period. Root colonization and total external mycelium correlated positively with shoot P concentration and total dry weight at the two lowest P levels. Although the highest P level decreased root colonization, it did not affect total external mycelium to the same extent. As a result, a P availability imbalance affected negatively the mycorrhizal symbiosis and, consequently, the plant growth.
Resumo:
This report presents the results of a limited investigation of the use of lime as an auxiliary additive for improving the stabilization of soils with cutback asphalts. It is felt that the data obtained presents additional information on the subject of asphalt stabilization
Resumo:
Disposal of lime sludge remains a major challenge to cities in the Midwest. Disposal of lime sludge from water softening adds about 7-10% to the cost of water treatment. Having effective and safe options is essential for future compliance with the regulations of the State of Iowa and within budget restrictions. Dewatering and drying are essential to all reuse applications as this affects transportation costs and utility. Feasibility tests were conducted on some promising applications like SOx control in power generation facilities that burn coal, replacement of limestone as an ingredient in portland cement production, dust control on gravel roads, neutralization of industrial wastewater pH, and combination with fly ash or cement in construction fill applications. A detailed report and analysis of the construction fills application is presented in the second half of the report. A brief discussion of the results directly follows.
Resumo:
Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.
Resumo:
Lime Creek is a sub-watershed of the Cedar River above; approximately 25 miles from Cedar Rapids. The lower half of the stream is on the Iowa 2004 Section 303(d) impaired waters list. Monitoring by the Cedar River Watershed Monitoring Coalition documents that Lime Creek delivers above average amounts of nitrate+ nitrite-N, ammonia-Nand total phosphorus (above the 901 percentile) compared to other Cedar River sub-watersheds. The Cedar Rapids water utility is concerned about increasing delivery of nitrate+nitrate to the Cedar River, which provides drinking water for about 125,000 people in the area. A group of local citizens has formed the Lime Creek watershed council with the goal of reducing pollutant delivery to the creek and promoting sustainable, watershed-wide action by producers, urban and rural residents for improved environmental management. The council has established a performance-based program that rewards cooperators for improvement in research-based test and index scores which directly measure environmental impact of BMPs. The Iowa Com Growers Association is funding the performance rewards. The Watershed Coalition is contributing in-kind monitoring. Council and performance cooperators participate primarily with commitment of their own resources. WIRB funds will be used to increase program cooperators and for staff support. In addition to improvement of water quality in Lime Creek, the project will establish baseline values for arket-based a pro ch to valuing pollutant reduction by intensive livestock operations in eastern Iowa.
Resumo:
Reaaliaikainen, ennakoiva kunnonvalvonta on erittäin tärkeä osa modernin tehtaan tai tuotantolinjan toimintaa. Diplomityön teettäjä haluaa edelleen kehittää akustiseen emissioon perustuvaa kunnonvalvonta järjestelmäänsä, jotta siitä olisi enemmän hyötyä asiakkaalle. Diplomityö sisältää johdannonakustiseen emissioon ja akustisiin emissio sensoreihin. Työn tavoitteena oli kehittää päätöksentekojärjestelmä, jota käytettäisiin työn teettäjän valmistamien sensoreiden antaman tiedon automatisoituun analysointiin. Työssä on vertailtu kolmea eri ohjelmistotoimittajaa ja heidän ohjelmiaan, ja tehty ehdotus hankittavasta ohjelmistosta. Lisäksi työssä on kehitetty ohjeita, joiden avulla ohjelmisto ohjelmoidaan tuottamaan reaaliaikaista tietoa ja huolto-ohjeita sen käyttäjille. Lisäksi työssä annetaan ehdotuksia kunnonvalvonta- ja päätöksentekojärjestelmän edelleen kehittämiseen.
Resumo:
In the present work, the effect of twelve rootstocks on fruit quality of the nucellar clone IAC-5 of 'Tahiti' lime, (Citrus latifolia Tanaka) and the influence of fruit position on tree in fruit quality was evaluated in the Citrus Experimental Station of Bebedouro (EECB), located in the Bebedouro county, state of São Paulo, Brazil. A 8.0 x 5.0m planting frame was utilized. The evaluated rootstocks were: 'Carrizo' citrange (C. sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf.); the hybrids 'Rangpur' lime x 'Swingle' citrumello (C. limonia Osbeck x P. trifoliata Raf) and 'Changsha' x 'English Small'(C. sunki Hort. ex Tan. x P. trifoliata Raf.); the mandarins 'Sun Chu Sha Kat' (C. reticulata Blanco) and 'Sunki' (C. sunki Hort. ex Tanaka); the 'Rangpur' limes 'Cravo Limeira' and ' Cravo FCAV' (C. limonia Osbeck); the 'Swingle' citrumello (P. trifoliata Raf. x C. paradisi Macf.); the 'Orlando' tangelo (C. reticulata Blanco x C. paradisi Macf.) and the trifoliates cvs. 'Rubidoux', 'FCAV' and 'Flying Dragon' (P. trifoliata Raf.). The experiment was arranged in a randomized block design, with twelve treatments, six replicates and one plant per plot. The rootstocks induced differences in fruit quality; however, all the evaluated quality characteristics were within the values considered as normal and acceptable for the variety, constituting good alternative rootstocks for the 'Rangpur' lime. Additionally, the fruit position in the plant (northeastern or southwestern) had a significant influence on the external fruit color regardless of the rootstock.
Resumo:
The Tahiti acid lime in Brazil is mostly grown in the São Paulo State. The value of this crop production ranks among the ten most important fruits in the country. The Brazilian exports of Tahiti limes have increased in the last years with a corresponding increased demand for superior quality of fresh fruits, which is affected by mineral nutrients. Therefore, this study evaluated nutrient soil availability and its influence on nutritional status of trees based on the determination of leaf and fruit nutrient concentrations, fruit characteristics, and post harvest quality. Eleven commercial groves with trees older than 4-yr and differently managed were studied. Plots with six trees in each grove were sampled for soil (0-20 cm depth layer), leaf and fruit analyses with three replicates. Correlation coefficients were pair wised established for all variables. The results showed that N leaf concentration was well correlated with green color of fruit peel as measured by a color index (r = -0.71**), and which was optimum with Leaf-N around 22 g kg-1. Leaf-Ca was inversely correlated with fruit water loss after 14-day interval from harvest (r = -0.54*) demonstrating that Ca plays an important role in Tahiti fruit shelf-life. Data also suggested that increased fruit K concentration correlated with increased fruit water losses during storage (r >0.58*).
Resumo:
Rangpur lime (Citrus limonia Osbeck) in vitro organogenesis was studied based on explant type and cytokinin culture media supplementation. Four explants types collected from epicotyl or hypocotyl regions of in vitro germinated seedlings were evaluated. The epicotyl-derived explants consisted of epicotyl segments and the hypocotyl-derived explants consisted of the entire hypocotyl segment, the hypocotyl segment attached to a cotyledon fragment, and the hypocotyl segment divided longitudinally. The explants were cultured on EME culture medium supplemented with benzylaminopurine (0, 0.5, 1.0, or 1.5 mg L-1). The evaluation was performed after 6 weeks. Best results considering both the explant responsiveness and number of shoots developed per explants were obtained when epicotyl segments-derived explants were evaluated. Considering the explant responsiveness of hypocotyl segments-derived explants no difference was detected between the entire hypocotyl segment and the hypocotyl segment attached to a cotyledon fragment. Moreover, the percentage of responsive explants decreased when hypocotyl segments divided longitudinally were tested. No difference was detected for the number of shoots developed per explant considering the three types of hypocotyl-derived explants. Culture media supplementation with BAP was not essential for Rangpur lime in vitro organogenesis. However, adventitious shoot development was stimulated in concentrations between 0.5 - 1.0 mg L-1.
Resumo:
ABSTRACT The macaw palm [Acrocomia aculeata (Jacq.) Lood. ex Mart] has been domesticated to subsidize biodiesel production programs in Brazil. However, little is known about the seedling production of this species. This study aimed to evaluate substrate mixtures, limestone and phosphorus rates for substrate amendment and topdressing frequency in macaw palm seedlings. Three trials were conducted in a greenhouse up to six months of nursery cultivation. Trial 1: determination of percent mineral and organic fractions of seven substrate mixtures. Trial 2: evaluation of four limerates for soil amendment versus four phosphorus rates. Trial 3: evaluation of N, K and Mg topdressing frequency. Significant differences were found in the three trials for most of the variables (plant height, leaf number, shoot dry mass, root dry mass, vigor and bulb diameter). The main results obtained were as follow: Trial1 - the best seedling growth was observed in substrates with at least 25% organic matter. Trial2 -lime rates ranging from 0.50 to 1.25 kg associated with 3 to 4 kg of single superphosphate per m3 of substrate provided the best seedling growth. Trial 3 - topdressing fertilization provided better development of seedlings regardless of frequency.