947 resultados para hybrid algorithm
Resumo:
Paper submitted to AIChE 2012 Annual Meeting: Energy Efficiency by Process Intensification, Pittsburgh, PA, October 28-November 2, 2012.
Resumo:
A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.
Resumo:
Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the general public. For the resolution of the problem we employed a hybrid simulation- optimization methodology, i.e., the superstructure of the process was developed directly in a chemical process simulator connected to a state of the art optimizer. The model was formulated as a GDP and solved using a logic algorithm that avoids the reformulation as MINLP -Mixed Integer Non Linear Programming-. Our research gave us Pareto curves compounded by three different configurations where the LCA has been assessed by two different parameters: global warming potential and ecoindicator-99.
Resumo:
We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.
Resumo:
In printed circuit board (PCB) assembly, the efficiency of the component placement process is dependent on two interrelated issues: the sequence of component placement, that is, the component sequencing problem, and the assignment of component types to feeders of the placement machine, that is, the feeder arrangement problem. In cases where some components with the same type are assigned to more than one feeder, the component retrieval problem should also be considered. Due to their inseparable relationship, a hybrid genetic algorithm is adopted to solve these three problems simultaneously for a type of PCB placement machines called the sequential pick-and-place (PAP) machine in this paper. The objective is to minimise the total distance travelled by the placement head for assembling all components on a PCB. Besides, the algorithm is compared with the methods proposed by other researchers in order to examine its effectiveness and efficiency.
Resumo:
In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.
Resumo:
In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.
Resumo:
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.
Resumo:
Real world search problems, characterised by nonlinearity, noise and multidimensionality, are often best solved by hybrid algorithms. Techniques embodying different necessary features are triggered at specific iterations, in response to the current state of the problem space. In the existing literature, this alternation is managed either statically (through pre-programmed policies) or dynamically, at the cost of high coupling with algorithm inner representation. We extract two design patterns for hybrid metaheuristic search algorithms, the All-Seeing Eye and the Commentator patterns, which we argue should be replaced by the more flexible and loosely coupled Simple Black Box (Two-B) and Utility-based Black Box (Three-B) patterns that we propose here. We recommend the Two-B pattern for purely fitness based hybridisations and the Three-B pattern for more generic search quality evaluation based hybridisations.
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
This research aims at a study of the hybrid flow shop problem which has parallel batch-processing machines in one stage and discrete-processing machines in other stages to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of jobs. The problem is denoted as: FF: batch1,sj:Cmax. The problem is formulated as a mixed-integer linear program. The commercial solver, AMPL/CPLEX, is used to solve problem instances to their optimality. Experimental results show that AMPL/CPLEX requires considerable time to find the optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in average. A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to overcome the computational (time) problem encountered while using the commercial solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It decomposes the entire problem into three sub-problems, and schedules the sub-problems one by one. The proposed BFD heuristic consists of four major steps: formulating sub-problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a hybrid flow shop with discrete processing machines, and the other for scheduling parallel batching machines (single stage). Both consider job arrival and delivery times. An experiment design is conducted to evaluate the effectiveness of the proposed BFD, which is further evaluated against a set of common heuristics including a randomized greedy heuristic and five dispatching rules. The results show that the proposed BFD heuristic outperforms all these algorithms. To evaluate the quality of the heuristic solution, a procedure is developed to calculate a lower bound of makespan for the problem under study. The lower bound obtained is tighter than other bounds developed for related problems in literature. A meta-search approach based on the Genetic Algorithm concept is developed to evaluate the significance of further improving the solution obtained from the proposed BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in average within a negligible time when problem size is less than 50 jobs.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Recently, energy efficiency or green IT has become a hot issue for many IT infrastructures as they attempt to utilize energy-efficient strategies in their enterprise IT systems in order to minimize operational costs. Networking devices are shared resources connecting important IT infrastructures, especially in a data center network they are always operated 24/7 which consume a huge amount of energy, and it has been obviously shown that this energy consumption is largely independent of the traffic through the devices. As a result, power consumption in networking devices is becoming more and more a critical problem, which is of interest for both research community and general public. Multicast benefits group communications in saving link bandwidth and improving application throughput, both of which are important for green data center. In this paper, we study the deployment strategy of multicast switches in hybrid mode in energy-aware data center network: a case of famous fat-tree topology. The objective is to find the best location to deploy multicast switch not only to achieve optimal bandwidth utilization but also to minimize power consumption. We show that it is possible to easily achieve nearly 50% of energy consumption after applying our proposed algorithm.
Resumo:
This work applies a hybrid approach in solving the university curriculum-based course timetabling problem as presented as part of the 2nd International Timetabling Competition 2007 (ITC2007). The core of the hybrid approach is based on an artificial bee colony algorithm. Past methods have applied artificial bee colony algorithms to university timetabling problems with high degrees of success. Nevertheless, there exist inefficiencies in the associated search abilities in term of exploration and exploitation. To improve the search abilities, this work introduces a hybrid approach entitled nelder-mead great deluge artificial bee colony algorithm (NMGD-ABC) where it combined additional positive elements of particle swarm optimization and great deluge algorithm. In addition, nelder-mead local search is incorporated into the great deluge algorithm to further enhance the performance of the resulting method. The proposed method is tested on curriculum-based course timetabling as presented in the ITC2007. Experimental results reveal that the proposed method is capable of producing competitive results as compared with the other approaches described in literature
Resumo:
Hybrid simulation is a technique that combines experimental and numerical testing and has been used for the last decades in the fields of aerospace, civil and mechanical engineering. During this time, most of the research has focused on developing algorithms and the necessary technology, including but not limited to, error minimisation techniques, phase lag compensation and faster hydraulic cylinders. However, one of the main shortcomings in hybrid simulation that has pre- vented its widespread use is the size of the numerical models and the effect that higher frequencies may have on the stability and accuracy of the simulation. The first chapter in this document provides an overview of the hybrid simulation method and the different hybrid simulation schemes, and the corresponding time integration algorithms, that are more commonly used in this field. The scope of this thesis is presented in more detail in chapter 2: a substructure algorithm, the Substep Force Feedback (Subfeed), is adapted in order to fulfil the necessary requirements in terms of speed. The effects of more complex models on the Subfeed are also studied in detail, and the improvements made are validated experimentally. Chapters 3 and 4 detail the methodologies that have been used in order to accomplish the objectives mentioned in the previous lines, listing the different cases of study and detailing the hardware and software used to experimentally validate them. The third chapter contains a brief introduction to a project, the DFG Subshake, whose data have been used as a starting point for the developments that are shown later in this thesis. The results obtained are presented in chapters 5 and 6, with the first of them focusing on purely numerical simulations while the second of them is more oriented towards a more practical application including experimental real-time hybrid simulation tests with large numerical models. Following the discussion of the developments in this thesis is a list of hardware and software requirements that have to be met in order to apply the methods described in this document, and they can be found in chapter 7. The last chapter, chapter 8, of this thesis focuses on conclusions and achievements extracted from the results, namely: the adaptation of the hybrid simulation algorithm Subfeed to be used in conjunction with large numerical models, the study of the effect of high frequencies on the substructure algorithm and experimental real-time hybrid simulation tests with vibrating subsystems using large numerical models and shake tables. A brief discussion of possible future research activities can be found in the concluding chapter.