865 resultados para human-virtual environment interaction
Resumo:
Modelling business processes for analysis or redesign usually requires the collaboration of many stakeholders. These stakeholders may be spread across locations or even companies, making co-located collaboration costly and difficult to organize. Modern process modelling technologies support remote collaboration but lack support for visual cues used in co-located collaboration. Previously we presented a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. However, the added complexity of having to navigate a virtual environment and using an avatar for communication made the tool difficult to use for novice users. We now present an evolved version of the technology that addresses these issues by providing natural user interfaces for non-verbal communication, navigation and model manipulation.
Resumo:
In daily life, rich experiences evolve in every environmental and social interaction. Because experience has a strong impact on how people behave, scholars in different fields are interested in understanding what constitutes an experience. Yet even if interest in conscious experience is on the increase, there is no consensus on how such experience should be studied. Whatever approach is taken, the subjective and psychologically multidimensional nature of experience should be respected. This study endeavours to understand and evaluate conscious experiences. First I intro-duce a theoretical approach to psychologically-based and content-oriented experience. In the experiential cycle presented here, classical psychology and orienting-environmental content are connected. This generic approach is applicable to any human-environment interaction. Here I apply the approach to entertainment virtual environments (VEs) such as digital games and develop a framework with the potential for studying experiences in VEs. The development of the methodological framework included subjective and objective data from experiences in the Cave Automatic Virtual Environment (CAVE) and with numerous digital games (N=2,414). The final framework consisted of fifteen factor-analytically formed subcomponents of the sense of presence, involvement and flow. Together, these show the multidimensional experiential profile of VEs. The results present general experiential laws of VEs and show that the interface of a VE is related to (physical) presence, which psychologically means attention, perception and the cognitively evaluated realness and spatiality of the VE. The narrative of the VE elicits (social) presence and involvement and affects emotional outcomes. Psychologically, these outcomes are related to social cognition, motivation and emotion. The mechanics of a VE affect the cognitive evaluations and emotional outcomes related to flow. In addition, at the very least, user background, prior experience and use context affect the experiential variation. VEs are part of many peoples lives and many different outcomes are related to them, such as enjoyment, learning and addiction, depending on who is making the evalua-tion. This makes VEs societally important and psychologically fruitful to study. The approach and framework presented here contribute to our understanding of experiences in general and VEs in particular. The research can provide VE developers with a state-of-the art method (www.eveqgp.fi) that can be utilized whenever new product and service concepts are designed, prototyped and tested.
Resumo:
An important characteristic of virtual assembly is interaction. Traditional di-rect manipulation in virtual assembly relies on dynamic collision detection, which is very time-consuming and even impossible in desktop virtual assembly environment. Feature-matching isa critical process in harmonious virtual assembly, and is the premise of assembly constraint sens-ing. This paper puts forward an active object-based feature-matching perception mechanism and afeature-matching interactive computing process, both of which make the direct manipulation in vir-tual assembly break away from collision detection. They also help to enhance virtual environmentunderstandability of user intention and promote interaction performance. Experimental resultsshow that this perception mechanism can ensure that users achieve real-time direct manipulationin desktop virtual environment.
Resumo:
In order to use virtual reality as a sport analysis tool, we need to be sure that an immersed athlete reacts realistically in a virtual environment. This has been validated for a real handball goalkeeper facing a virtual thrower. However, we currently ignore which visual variables induce a realistic motor behavior of the immersed handball goalkeeper. In this study, we used virtual reality to dissociate the visual information related to the movements of the player from the visual information related to the trajectory of the ball. Thus, the aim is to evaluate the relative influence of these different visual information sources on the goalkeeper's motor behavior. We tested 10 handball goalkeepers who had to predict the final position of the virtual ball in the goal when facing the following: only the throwing action of the attacking player (TA condition), only the resulting ball trajectory (BA condition), and both the throwing action of the attacking player and the resulting ball trajectory (TB condition). Here we show that performance was better in the BA and TB conditions, but contrary to expectations, performance was substantially worse in the TA condition. A significant effect of ball landing zone does, however, suggest that the relative importance between visual information from the player and the ball depends on the targeted zone in the goal. In some cases, body-based cues embedded in the throwing actions may have a minor influence on the ball trajectory and vice versa. Kinematics analysis was then combined with these results to determine why such differences occur depending on the ball landing zone and consequently how it can clarify the role of different sources of visual information on the motor behavior of an athlete immersed in a virtual environment.
Resumo:
A series of experiments is described, evaluating user recall of visualisations of historical chronology. Such visualisations are widely created but have not hitherto been evaluated. Users were tested on their ability to learn a sequence of historical events presented in a virtual environment (VE) fly-through visualisation, compared with the learning of equivalent material in other formats that are sequential but lack the 3D spatial aspect. Memorability is a particularly important function of visualisation in education. The measures used during evaluation are enumerated and discussed. The majority of the experiments reported compared three conditions, one using a virtual environment visualisation with a significant spatial element, one using a serial on-screen presentation in PowerPoint, and one using serial presentation on paper. Some aspects were trialled with groups having contrasting prior experience of computers, in the UK and Ukraine. Evidence suggests that a more complex environment including animations and sounds or music, intended to engage users and reinforce memorability, were in fact distracting. Findings are reported in relation to the age of the participants, suggesting that children at 11–14 years benefit less from, or are even disadvantaged by, VE visualisations when compared with 7–9 year olds or undergraduates. Finally, results suggest that VE visualisations offering a ‘landscape’ of information are more memorable than those based on a linear model. Keywords: timeline, chronographics
Resumo:
It is well understood that for haptic interaction: free motion performance and closed-loop constrained motion performance have conflicting requirements. The difficulties for both conditions are compounded when increased workspace is required as most solutions result in a reduction of achievable impedance and bandwidth. A method of chaining devices together to increase workspace without adverse effect on performance is described and analysed. The method is then applied to a prototype, colloquially known as 'The Flying Phantom', and shown to provide high-bandwidth, low impedance interaction over the full range of horizontal movement across the front of a human user.
Resumo:
As Virtual Reality pushes the boundaries of the human computer interface new ways of interaction are emerging. One such technology is the integration of haptic interfaces (force-feedback devices) into virtual environments. This modality offers an improved sense of immersion to that achieved when relying only on audio and visual modalities. The paper introduces some of the technical obstacles such as latency and network traffic that need to be overcome for maintaining a high degree of immersion during haptic tasks. The paper describes the advantages of integrating haptic feedback into systems, and presents some of the technical issues inherent in a networked haptic virtual environment. A generic control interface has been developed to seamlessly mesh with existing networked VR development libraries.
Resumo:
Our eyes are input sensors which Provide our brains with streams of visual data. They have evolved to be extremely efficient, and they will constantly dart to-and-fro to rapidly build up a picture of the salient entities in a viewed scene. These actions are almost subconscious. However, they can provide telling signs of how the brain is decoding the visuals and call indicate emotional responses, prior to the viewer becoming aware of them. In this paper we discuss a method of tracking a user's eye movements, and Use these to calculate their gaze within an immersive virtual environment. We investigate how these gaze patterns can be captured and used to identify viewed virtual objects, and discuss how this can be used as a, natural method of interacting with the Virtual Environment. We describe a flexible tool that has been developed to achieve this, and detail initial validating applications that prove the concept.
Resumo:
Human behavior is a major factor modulating the consequences of road tunnel accidents. We investigated the effect of information and instruction on drivers' behavior as well as the usability of virtual environments to simulate such emergency situations. Tunnel safety knowledge of the general population was assessed using an online questionnaire, and tunnel safety behavior was investigated in a virtual reality experiment. Forty-four participants completed three drives through a virtual road tunnel and were confronted with a traffic jam, no event, and an accident blocking the road. Participants were randomly assigned to a control group (no intervention), an informed group who read a brochure containing safety information prior to the tunnel drives, or an informed and instructed group who read the same brochure and received additional instructions during the emergency situation. Informed participants showed better and quicker safety behavior than the control group. Self-reports of anxiety were assessed three times during each drive. Anxiety was elevated during and after the emergency situation. The findings demonstrate problematic safety behavior in the control group and that knowledge of safety information fosters adequate behavior in tunnel emergencies. Enhanced anxiety ratings during the emergency situation indicate external validity of the virtual environment.
Resumo:
Education in the Information Society is based on asynchronism in time and space, interactivity and virtual restructuring of the educational space. One way to implement such a model of training is web-based - use of the WWW as a virtual environment to access educational materials or to organize the learning process. This work presents a virtual learning environment (VLE) developed for students and made up of modules of dynamically changing content implemented by authorized users. The aim is, through advanced technology for e-learning, testing and self-testing to stimulate students’ activity to focus their potential on the acquisition of the necessary knowledge, skills and competences. The VLE was developed under the Human Resources Development Operational Programme.
Resumo:
Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca2+ signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This demonstration showcases a novel prototype application that implements collaborative virtual environment and augmented reality technologies to improve remote collaborative process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in an intuitive shared work and task space. Our tool is easily deployed using open source software, and commodity hardware, and is expected to assist with saving money on travel costs for large scale process modelling projects covering national and international centres within an enterprise.
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
Recently claims have been made that all universities will in coming decades merge to become just a few mega-institutions offering online degrees to the world. This assumes a degree of literacy with ICT (information and communication technology) amongst potential students, who are often regarded as 'digital natives'. Far from being digital natives, many students have considerable trouble using ICT beyond the ubiquitous Facebook. While some students are computer literate, a substantial proportion lack the skills to prosper under their own devices in an online tertiary education environment. For these students a blended learning experience is needed to develop skills to effectively interact in the virtual environment. This paper presents a case study that specifically examined the ICT capabilities of first-year university students enrolled in the School of Civil Engineering and the Built Environment at Queensland University of Technology (QUT). Empirical data are presented and curriculum strategies articulated to develop ICT skills in university undergraduates.
Resumo:
The article introduces a novel platform for conducting controlled and risk-free driving and traveling behavior studies, called Cyber-Physical System Simulator (CPSS). The key features of CPSS are: (1) simulation of multiuser immersive driving in a threedimensional (3D) virtual environment; (2) integration of traffic and communication simulators with human driving based on dedicated middleware; and (3) accessibility of multiuser driving simulator on popular software and hardware platforms. This combination of features allows us to easily collect large-scale data on interesting phenomena regarding the interaction between multiple user drivers, which is not possible with current single-user driving simulators. The core original contribution of this article is threefold: (1) we introduce a multiuser driving simulator based on DiVE, our original massively multiuser networked 3D virtual environment; (2) we introduce OpenV2X, a middleware for simulating vehicle-to-vehicle and vehicle to infrastructure communication; and (3) we present two experiments based on our CPSS platform. The first experiment investigates the “rubbernecking” phenomenon, where a platoon of four user drivers experiences an accident in the oncoming direction of traffic. Second, we report on a pilot study about the effectiveness of a Cooperative Intelligent Transport Systems advisory system.