899 resultados para human wildlife interactions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
NAPc2, an anticoagulant protein from the hematophagous nematode Ancylostoma caninum evaluated in phase-II/IIa clinical trials, inhibits the extrinsic blood coagulation pathway by a two step mechanism, initially interacting with the hitherto uncharacterized factor Xa exosite involved in macromolecular recognition and subsequently inhibiting factor VIIa (K-i = 8.4 pM) of the factor VIIa/tissue factor complex. NAPc2 is highly flexible, becoming partially ordered and undergoing significant structural changes in the C terminus upon binding to the factor Xa exosite. In the crystal structure of the ternary factor Xa/NAPc2/selectide complex, the binding interface consists of an intermolecular antiparallel beta-sheet formed by the segment of the polypeptide chain consisting of residues 74-80 of NAPc2 with the residues 86-93 of factor Xa that is additional maintained by contacts between the short helical segment (residues 67-73) and a turn (residues 26-29) of NAPc2 with the short C-terminal helix of factor Xa (residues 233-243). This exosite is physiologically highly relevant for the recognition and inhibition of factor X/Xa by macromolecular substrates and provides a structural motif for the development of a new class of inhibitors for the treatment of deep vein thrombosis and angioplasty. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The N-terminus of the human dihydroorotate dehydrogenase (HsDHODH) has been described as important for the enzyme attachment in the inner mitochondrial membrane and possibly to regulate enzymatic activity. In this study, we synthesized the peptide acetyl-GDERFYAEHLMPTLQGLLDPESAHRL AVRFTSLGamide, comprising the residues 33-66 of HsDHODH N-terminal conserved microdomain. Langmuir monolayers and circular dichroism (CD) were employed to investigate the interactions between the peptide and membrane model, as micelles and monolayers of the lipids phosphatidylcholine (PC), 3-phosphatidylethanolamine (PE) and cardiolipin (CL). These lipids represent the major constituents of inner mitochondrial membranes. According to CD data, the peptide adopted a random structure in water, whereas it acquired α-helical structures in the presence of micelles. The π–A isotherms and polarization- modulated infrared reflection-absorption spectroscopy on monolayers showed that the peptide interacted with all lipids, but in different ways. In DPPC monolayers, the peptide penetrated into the hydrophobic region. The strongest initial interaction occurred with DPPE, but the peptide was expelled from this monolayer at high surface pressures. In CL, the peptide could induce a partial dissolution of the monolayer, leading to shorter areas at the monolayer collapse. These results corroborate the literature, where the HsDHODH microdomain is anchored into the inner mitochondrial membrane. Moreover, the existence of distinct conformations and interactions with the different membrane lipids indicates that the access to the enzyme active site may be controlled not only by conformational changes occurring at the microdomain of the protein, but also by some lipid-protein synergetic mechanism, where the HsDHODH peptide would be able to recognize lipid domains in the membrane. - See more at: http://www.eurekaselect.com/122062/article#sthash.1ZZbc7E0.dpuf
Resumo:
Bovine tuberculosis (Mycobacterium bovis) was discovered in northern Michigan white-tailed deer (Odocoileus virginianus) in 1994, and has been known to exist in Michigan cattle herds since 1998. Despite efforts to eradicate the disease in cattle, infection and re-infection of farms continues to occur, suggesting transmission among cattle, deer, or other wildlife reservoirs. The goals of this study were to document wildlife activity on farms and evaluate the possible role wildlife play in the ecology of bovine tuberculosis (TB) in Michigan. Visual observations were conducted on farms in a 5-county area of northern Michigan to document direct wildlife-cattle interactions (i.e., <5 m between individuals) and indirect interactions (e.g., wildlife visitations to food stores and areas accessible to cattle). Observations were conducted primarily during evening and early morning hours between January and August, 2002, and on a 24-hour schedule between January and August, 2003. Total observation time accumulated through the duration of the study was 1,780 hours. Results indicated that direct interaction between deer and cattle was a rare event; no direct interactions were observed during the first year, and only one direct interaction was observed during the second year. However, through the duration of the study 21 direct interactions were documented between cattle and turkey, and 11 direct interactions were documented between cattle and mammals other than deer. In total, 273 indirect interactions by deer, 112 indirect interactions by turkeys, and 248 indirect interactions by mammals other than deer were observed during the 2 field seasons combined. These data supported the hypothesis that indirect interactions among wildlife and cattle are a potential mechanism for the transmission of TB in Michigan. If direct interactions were important mechanisms of TB transmission to cattle in northern Michigan, my data suggested that feral cats were the species of most concern, even though there were more observations between turkey and cattle. Unlike cats, which can become infected with and transmit TB, there is no evidence for such pathogenesis in turkey.
Resumo:
Transthyretin (TTR) is a carrier protein involved in human amyloidosis. The development of small molecules that may act as TTR amyloid inhibitors is a promising strategy to treat these pathologies. Here we selected and characterized the interaction of flavonoids with the wild type and the V30M amyloidogenic mutant TTR. TTR acid aggregation was evaluated in vitro in the presence of the different flavonoids. The best TTR aggregation inhibitors were studied by Isothermal Titration Calorimetry (ITC) in order to reveal their thermodynamic signature of binding to TTRwt. Crystal structures of TTRwt in complex with the top binders were also obtained, enabling us to in depth inspect TTR interactions with these flavonoids. The results indicate that changing the number and position of hydroxyl groups attached to the flavonoid core strongly influence flavonoid recognition by TTR, either by changing ligand affinity or its mechanism of interaction with the two sites of TTR. We also compared the results obtained for ITRwt with the V30M mutant structure in the apo form, allowing us to pinpoint structural features that may facilitate or hamper ligand binding to the V30M mutant. Our data show that the TTRwt binding site is labile and, in particular, the central region of the cavity is sensible for the small differences in the ligands tested and can be influenced by the Met30 amyloidogenic mutation, therefore playing important roles in flavonoid binding affinity, mechanism and mutant protein ligand binding specificities. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Characterization of Human Respiratory Syncytial Virus (HRSV) protein interactions with host cell components is crucial to devise antiviral strategies. Viral nucleoprotein, phosphoprotein and matrix protein genes were optimized for human codon usage and cloned into expression vectors. HEK-293T cells were transfected with these vectors, viral proteins were immunoprecipitated, and co-immunoprecipitated cellular proteins were identified through mass spectrometry. Cell proteins identified with higher confidence scores were probed in the immunoprecipitation using specific antibodies. The results indicate that nucleoprotein interacts with arginine methyl-transferase, methylosome protein and Hsp70. Phosphoprotein interacts with Hsp70 and tropomysin, and matrix with tropomysin and nucleophosmin. Additionally, we performed immunoprecipitation of these cellular proteins in cells infected with HRSV, followed by detection of co-immunoprecipitated viral proteins. The results indicate that these interactions also occur in the context of viral infection, and their potential contribution for a HRSV replication model is discussed.
Resumo:
In dieser Arbeit wurden zytotoxische Effekte sowie die inflammatorische Reaktionen des distalen respiratorischen Traktes nach Nanopartikelexposition untersucht. Besondere Aufmerksamkeit lag auch auf der Untersuchung unterschiedlicher zellulärer Aufnahmewege von Nanopartikeln wie z.B. Clathrin- oder Caveolae-vermittelte Endozytose oder auch Clathrin- und Caveolae-unabhängige Endozytose (mit möglicher Beteiligung von Flotillinen). Drei unterschiedliche Nanopartikel wurden hierbei gewählt: amorphes Silica (aSNP), Organosiloxan (AmorSil) und Poly(ethyleneimin) (PEI). Alle unterschiedlichen Materialien gewinnen zunehmend an Interesse für biomedizinische Forschungsrichtungen (drug and gene delivery). Insbesondere finden aSNPs auch in der Industrie vermehrt Anwendung, und stellen somit ein ernstzunehmendes Gesundheitsrisiko dar. Dieser wird dadurch zu einem begehrten Angriffsziel für pharmazeutische Verabreichungen von Medikamenten über Nanopartikel als Vehikel aber bietet zugleich auch eine Angriffsfläche für gesundheitsschädliche Nanomaterialien. Aus diesem Grund sollten die gesundheitsschädigenden Risiken, sowie das Schicksal von zellulär aufgenommenen NPs sorgfältig untersucht werden. In vivo Studien an der alveolaren-kapillaren Barriere sind recht umständlich. Aus diesem Grund wurde in dieser Arbeit ein Kokulturmodel benutzt, dass die Alveolar-Kapillare Barrier in vivo nachstellt. Das Model besteht aus dem humanen Lungenepithelzelltyp (z.B. NCI H441) und einem humanen microvasculären Endothelzelltyp (z.B. ISO-HAS-1), die auf entgegengesetzten Seiten eines Transwell-Filters ausgesät werden und eine dichte Barriere ausbilden. Die NP Interaktion mit Zellen in Kokultur wurde mit denen in konventioneller Monokultur verglichen, in der Zellen 24h vor dem Experiment ausgesät werden. Diese Studie zeigt, dass nicht nur die polarisierte Eigenschaft der Zellen in Kokultur sondern auch die unmittelbare Nähe von Epithel und Endothelzelle ausschlaggebend für durch aSNPs verursachte Effekte ist. Im Hinblick auf inflammatorische Marker (sICAM, IL-6, IL8-Ausschüttung), reagiert die Kokultur auf aSNPs empfindlicher als die konventionelle Monokultur, wohingegen die Epithelzellen in der Kokultur auf zytotoxikologischer Ebene (LDH-Ausschüttung) unempfindlicher auf aSNPs reagierten als die Zellen in Monokultur. Aufnahmestudien haben gezeigt, dass die Epithelzellen in Kokultur entschieden weniger NPs aufnehmen. Somit zeigen die H441 in der Kokultur ähnliche epitheliale Eigenschaften einer schützenden Barriere, wie sie auch in vivo zu finden sind. Obwohl eine ausreichende Aufnahme von NPs in H441 in Kokultur erreicht werden konnte, konnte ein Transport von NPs durch die epitheliale Schicht und eine Aufnahme in die endotheliale Schicht mit den gewählten Inkubationszeiten nicht gezeigt werden. Eine Clathrin- oder Caveolae-vermittelte Endozytose von NPs konnte mittels Immunfluoreszenz weder in der Mono- noch in der Kokultur nachgewiesen werden. Jedoch zeigte sich eine Akkumulation von NPs in Flotillin-1 und-2 enthaltende Vesikel in Epithelzellen aus beiden Kultursystemen. Ergebnisse mit Flotillin-inhibierten (siRNA) Epithelzellen, zeigten eine deutlich geringere Aufnahme von aSNPs. Zudem zeigte sich eine eine reduzierte Viabilität (MTS) von aSNP-behandelten Zellen. Dies deutet auf eine Beteiligung von Flotillinen an unbekannten (Clathrin oder Caveolae -unabhängig) Endozytosemechanismen und (oder) endosomaler Speicherung. Zusammenfassend waren die Aufnahmemechanismen für alle untesuchten NPs in konventioneller Monokultur und Kokultur vergleichbar, obwohl sich die Barriereeigenschaften deutlich unterscheiden. Diese Arbeit zeigt deutlich, dass sich die Zellen in Kokultur anders verhalten. Die Zellen erreichen hierbei einen höheren Differenzierungsgrad und eine Zellkommunikation mit anderen relevanten Zelltypen wird ermöglicht. Durch das Einbringen eines dritten relevanten Zelltyps in die Kokultur, des Alveolarmakrophagen (Zelllinie THP-1), welcher die erste Verteidigungsfront im Alveolus bildet, wird diese Aussage weiter bekräftigt. Erste Versuche haben gezeigt, dass die Triplekultur bezüglich ihrer Barriereeigenschaften und IL-8-Ausschüttung sensitiver auf z.B. TNF- oder LPS-Stimulation reagiert als die Kokultur. Verglichen mit konventionellen Monokulturen imitieren gut ausgebildete, multizelluräre Kokulturmodelle viel präziser das zelluläre Zusammenspiel im Körper. Darum liefern Nanopartikelinteraktionen mit dem in vitro-Triplekulturmodel aufschlussreichere Ergebnisse bezüglich umweltbedingter oder pharmazeutischer NP-Exposition in der distalen Lung als es uns bisher möglich war.
Resumo:
Adhesion, immune evasion and invasion are key determinants during bacterial pathogenesis. Pathogenic bacteria possess a wide variety of surface exposed and secreted proteins which allow them to adhere to tissues, escape the immune system and spread throughout the human body. Therefore, extensive contacts between the human and the bacterial extracellular proteomes take place at the host-pathogen interface at the protein level. Recent researches emphasized the importance of a global and deeper understanding of the molecular mechanisms which underlie bacterial immune evasion and pathogenesis. Through the use of a large-scale, unbiased, protein microarray-based approach and of wide libraries of human and bacterial purified proteins, novel host-pathogen interactions were identified. This approach was first applied to Staphylococcus aureus, cause of a wide variety of diseases ranging from skin infections to endocarditis and sepsis. The screening led to the identification of several novel interactions between the human and the S. aureus extracellular proteomes. The interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting, was characterized using label-free techniques and functional assays. The same approach was also applied to Neisseria meningitidis, major cause of bacterial meningitis and fulminant sepsis worldwide. The screening led to the identification of several potential human receptors for the neisserial adhesin A (NadA), an important adhesion protein and key determinant of meningococcal interactions with the human host at various stages. The interaction between NadA and human LOX-1 (low-density oxidized lipoprotein receptor) was confirmed using label-free technologies and cell binding experiments in vitro. Taken together, these two examples provided concrete insights into S. aureus and N. meningitidis pathogenesis, and identified protein microarray coupled with appropriate validation methodologies as a powerful large scale tool for host-pathogen interactions studies.
Resumo:
The impact of di-cationic pentamidine-analogues against Toxoplama gondii (Rh- and Me49-background) was investigated. The 72 h-growth assays showed that the arylimidamide DB750 inhibited the proliferation of tachyzoites of T. gondii Rh and T. gondii Me49 with an IC(50) of 0.11 and 0.13 muM, respectively. Pre-incubation of fibroblast monolayers with 1 muM DB750 for 12 h and subsequent culture in the absence of the drug also resulted in a pronounced inhibiton of parasite proliferation. However, upon 5-6 days of drug exposure, T. gondii tachyzoites adapted to the compound and resumed proliferation up to a concentration of 1.2 muM. Out of a set of 32 di-cationic compounds screened for in vitro activity against T. gondii, the arylimidamide DB745, exhibiting an IC(50) of 0.03 muM and favourable selective toxicity was chosen for further studies. DB745 also inhibited the proliferation of DB750-adapted T. gondii (IC(50)=0.07 muM). In contrast to DB750, DB745 also had a profound negative impact on extracellular non-adapted T. gondii tachyzoites, but not on DB750-adapted T. gondii. Adaptation of T. gondii to DB745 (up to a concentration of 0.46 muM) was much more difficult to achieve and feasible only over a period of 110 days. In cultures infected with DB750-adapted T. gondii seemingly intact parasites could occasionally be detected by TEM. This illustrates the astonishing capacity of T. gondii tachyzoites to adapt to environmental changes, at least under in vitro conditions, and suggests that DB745 could be an interesting drug candidate for further assessments in appropriate in vivo models.
Resumo:
Induction of protein expression in a tissue-specific manner by gene transfer over-expression techniques has been one means to define the function of a protein in a biological paradigm. Studies with retinoid reporter constructs transfected in mammary cell lines suggests that lactoferrin (Lf) affects retinoid signaling pathways and alters apoptosis. We tested the effects and interactions of over-expressed mammary-specific human lactoferrin (hLf) and dietary retinol palmitate on lactation and mammary gland development in mice. Increased retinol palmitate in the diet increased daily retinol equivalents (RE) to 2.6-fold over the normal mouse control diet. Transgene (Tg) expression in the dam fed control diet depressed pup weight gain. Severe depression of pup weight gain was observed when homozygote TgTg dams were fed the RE diet. Normal weight gain was restored when pups were placed with a wild type dam fed the RE diet; conversely, normal growing pups from the wild type dams showed declining weight gains when fostered to the TgTg RE-fed dams. Northern analysis of mammary tissue extracts showed a reduction in WAP and an increase in IGFBP-3 mRNA that was associated with the presence of the transgene. Histological evaluation of 3 days lactating mammary tissue showed mammary epithelial cells from TgTg animals contained excessive secretory products, suggesting a block in cellular secretion mechanisms. In addition, the mammary cells displayed a cellular apical membrane puckering that extended into the alveoli lumens. These studies demonstrate an in vivo interaction of Tg-hLf expression and dietary retinoids in mouse mammary glands. While normal mammary gland physiology may not be representative by these experiments because high Lf concentrations during early lactation are abnormal, the demonstrated biological interaction suggests that typical periods of high Lf concentrations may have impact upon developing and involuting mammary glands.
Resumo:
The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.