913 resultados para homogeneous Markov chain


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we present a risk theory application in the following scenario: In each period of time we have a change in the capital of the ensurance company and the outcome of a two-state Markov chain stabilishs if the company pays a benece it heat to one of its policyholders or it receives a Hightimes c > 0 paid by someone buying a new policy. At the end we will determine once again by the recursive equation for expectation the time ruin for this company

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper is presented a region-based methodology for Digital Elevation Model segmentation obtained from laser scanning data. The methodology is based on two sequential techniques, i.e., a recursive splitting technique using the quad tree structure followed by a region merging technique using the Markov Random Field model. The recursive splitting technique starts splitting the Digital Elevation Model into homogeneous regions. However, due to slight height differences in the Digital Elevation Model, region fragmentation can be relatively high. In order to minimize the fragmentation, a region merging technique based on the Markov Random Field model is applied to the previously segmented data. The resulting regions are firstly structured by using the so-called Region Adjacency Graph. Each node of the Region Adjacency Graph represents a region of the Digital Elevation Model segmented and two nodes have connectivity between them if corresponding regions share a common boundary. Next it is assumed that the random variable related to each node, follows the Markov Random Field model. This hypothesis allows the derivation of the posteriori probability distribution function whose solution is obtained by the Maximum a Posteriori estimation. Regions presenting high probability of similarity are merged. Experiments carried out with laser scanning data showed that the methodology allows to separate the objects in the Digital Elevation Model with a low amount of fragmentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with ℋ 2 and ℋ ∞ filter design for discrete-time Markov jump systems. The usual assumption of mode-dependent design, where the current Markov mode is available to the filter at every instant of time is substituted by the case where that availability is subject to another Markov chain. In other words, the mode is transmitted to the filter through a network with given transmission failure probabilities. The problem is solved by modeling a system with N modes as another with 2N modes and cluster availability. We also treat the case where the transition probabilities are not exactly known and demonstrate our conditions for calculating an ℋ ∞ norm bound are less conservative than the available results in the current literature. Numerical examples show the applicability of the proposed results. ©2010 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In electronic support, receivers must maintain surveillance over the very wide portion of the electromagnetic spectrum in which threat emitters operate. A common approach is to use a receiver with a relatively narrow bandwidth that sweeps its centre frequency over the threat bandwidth to search for emitters. The sequence and timing of changes in the centre frequency constitute a search strategy. The search can be expedited, if there is intelligence about the operational parameters of the emitters that are likely to be found. However, it can happen that the intelligence is deficient, untrustworthy or absent. In this case, what is the best search strategy to use? A random search strategy based on a continuous-time Markov chain (CTMC) is proposed. When the search is conducted for emitters with a periodic scan, it is shown that there is an optimal configuration for the CTMC. It is optimal in the sense that the expected time to intercept an emitter approaches linearity most quickly with respect to the emitter's scan period. A fast and smooth approach to linearity is important, as other strategies can exhibit considerable and abrupt variations in the intercept time as a function of scan period. In theory and numerical examples, the optimum CTMC strategy is compared with other strategies to demonstrate its superior properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Key words: Markov-modulated queues, waiting time, heavy traffic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we describe a method to decompose a well-known measure of debt ratings mobility into it's directional components. We show, using sovereign debt ratings as an example, that this directional decomposition allows us to better understand the underlying characteristics of debt ratings migration and, for the case of the data set used, that the standard Markov chain model is not homogeneous in either the time or cross-sectional dimensions. We find that the directional decomposition also allows us to sign the change in quality of debt over time and across sub-groups of the population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we present our understanding about the article of Aksoy [1], which uses Markov chains to model the flow of intermittent rivers. Then, we executed an application of his model in order to generate data for intermittent streamflows, based on a data set of Brazilian streams. After that, we build a hidden Markov model as a proposed new approach to the problem of simulation of such flows. We used the Gamma distribution to simulate the increases and decreases in river flows, along with a two-state Markov chain. The motivation for us to use a hidden Markov model comes from the possibility of obtaining the same information that the Aksoy’s model provides, but using a single tool capable of treating the problem as a whole, and not through multiple independent processes

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Markov Chain analysis was recently proposed to assess the time scales and preferential pathways into biological or physical networks by computing residence time, first passage time, rates of transfer between nodes and number of passages in a node. We propose to adapt an algorithm already published for simple systems to physical systems described with a high resolution hydrodynamic model. The method is applied to bays and estuaries on the Eastern Coast of Canada for their interest in shellfish aquaculture. Current velocities have been computed by using a 2 dimensional grid of elements and circulation patterns were summarized by averaging Eulerian flows between adjacent elements. Flows and volumes allow computing probabilities of transition between elements and to assess the average time needed by virtual particles to move from one element to another, the rate of transfer between two elements, and the average residence time of each system. We also combined transfer rates and times to assess the main pathways of virtual particles released in farmed areas and the potential influence of farmed areas on other areas. We suggest that Markov chain is complementary to other sets of ecological indicators proposed to analyse the interactions between farmed areas - e.g. depletion index, carrying capacity assessment. Markov Chain has several advantages with respect to the estimation of connectivity between pair of sites. It makes possible to estimate transfer rates and times at once in a very quick and efficient way, without the need to perform long term simulations of particle or tracer concentration.