923 resultados para high angular resolution diffusion imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The barred spiral galaxy M83 (NGC5236) has been observed in the 12CO J=1–0 and J=2–1 millimetre lines with the Swedish-ESO Submillimetre Telescope (SEST). The sizes of the CO maps are 100×100, and they cover the entire optical disk. The CO emission is strongly peaked toward the nucleus. The molecular spiral arms are clearly resolved and can be traced for about 360º. The total molecular gas mass is comparable to the total Hi mass, but H2 dominates in the optical disk. Iso-velocity maps show the signature of an inclined, rotating disk, but also the effects of streaming motions along the spiral arms. The dynamical mass is determined and compared to the gas mass. The pattern speed is determined from the residual velocity pattern, and the locations of various resonances are discussed. The molecular gas velocity dispersion is determined, and a trend of decreasing dispersion with increasing galactocentric radius is found. A total gas (H2+Hi+He) mass surface density map is presented, and compared to the critical density for star formation of an isothermal gaseous disk. The star formation rate (SFR) in the disk is estimated using data from various star formation tracers. The different SFR estimates agree well when corrections for extinctions, based on the total gas mass map, are made. The radial SFR distribution shows features that can be associated with kinematic resonances. We also find an increased star formation efficiency in the spiral arms. Different Schmidt laws are fitted to the data. The star formation properties of the nuclear region, based on high angular resolution HST data, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of the disk must be <1000 K and the toroidal magnetic field component must be <250 mG. If the molecular mass density in the disk is 10(10) cm-3, then the disk mass is approximately 10(4) M[symbol: see text], and the disk is marginally stable as defined by the Toomre stability parameter Q (Q = 6 at the inner edge and 1 at the outer edge). The inward drift velocity is predicted to be <0.007 km.s-1, for a viscosity parameter of 0.1, and the accretion rate is <7 x 10(-5) M[symbol: see text].yr-1. At this value the accretion would be sufficient to power the nuclear x-ray source of 4 x 10(40) ergs-1 (1 erg = 0.1 microJ). The volume of individual maser components may be as large as 10(46) cm3, based on the velocity gradients, which is sufficient to supply the observed luminosity. The pump power undoubtedly comes from the nucleus, perhaps in the form of x-rays. The warp may allow the pump radiation to penetrate the disk obliquely [Neufeld, D. A. & Maloney, P. R. (1995) Astrophys. J. Lett. 447, L17-L19]. A total of 15 H2O megamasers have been identified out of >250 galaxies searched. Galaxy NGC4258 may be the only case where conditions are optimal to reveal a well-defined nuclear disk. Future measurement of proper motions and accelerations for NGC4258 will yield an accurate distance and a more precise definition of the dynamics of the disk

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6 `' angular resolution and 72 mu Jy beam(-1) rms noise. The images (centered at R. A. 00(h)35(m)00(s), decl. -67 degrees 00'00 `' and R. A. 00(h)59(m)17(s), decl. -67.00'00 `', J2000 epoch) cover 8.42 deg(2) sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50 `'. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a procedure for tissue preparation that combines thoroughly controlled physical and chemical treatments: quick-freezing and freeze-drying followed by fixation with OsO4 vapors and embedding by direct resin infiltration. Specimens of frog cutaneous pectoris muscle thus prepared were analyzed for total calcium using electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) approach. The preservation of the ultrastructure was excellent, with positive K/Na ratios revealed in the fibers by x-ray microanalysis. Clear, high-resolution EELS/ESI calcium signals were recorded from the lumen of terminal cisternae of the sarcoplasmic reticulum but not from longitudinal cisternae, as expected from previous studies carried out with different techniques. In many mitochondria, calcium was below detection whereas in others it was appreciable although at variable level. Within the motor nerve terminals, synaptic vesicles as well as some cisternae of the smooth endoplasmic reticulum yielded positive signals at variance with mitochondria, that were most often below detection. Taken as a whole, the present study reveals the potential of our experimental approach to map with high spatial resolution the total calcium within individual intracellular organelles identified by their established ultrastructure, but only where the element is present at high levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 -aEuro parts per thousand 15 e s(-1) pixel(-1)), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast and recently commissioned at the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 - 15 e/pixel/s), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, and up to 200 Hz when the CCD is windowed. ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution. We will present the current instrument set-up and parameters, observing modes, and future plans, including a new high QE camera allowing 15 Hz for Halpha. Interested parties should see https://habu.pst.qub.ac.uk/groups/arcresearch/wiki/de502/ROSA.html

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional imaging of brain electrical activity was performed in nine acute, neuroleptic-naive, first-episode, productive patients with schizophrenia and 36 control subjects. Low-resolution electromagnetic tomography (LORETA, three-dimensional images of cortical current density) was computed from 19-channel of electroencephalographic (EEG) activity obtained under resting conditions, separately for the different EEG frequencies. Three patterns of activity were evident in the patients: (1) an anterior, near-bilateral excess of delta frequency activity; (2) an anterior-inferior deficit of theta frequency activity coupled with an anterior-inferior left-sided deficit of alpha-1 and alpha-2 frequency activity; and (3) a posterior-superior right-sided excess of beta-1, beta-2 and beta-3 frequency activity. Patients showed deviations from normal brain activity as evidenced by LORETA along an anterior-left-to-posterior-right spatial axis. The high temporal resolution of EEG makes it possible to specify the deviations not only as excess or deficit, but also as inhibitory, normal and excitatory. The patients showed a dis-coordinated brain functional state consisting of inhibited prefrontal/frontal areas and simultaneously overexcited right parietal areas, while left anterior, left temporal and left central areas lacked normal routine activity. Since all information processing is brain-state dependent, this dis-coordinated state must result in inadequate treatment of (externally or internally generated) information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to compare quantitative and semiquantitative parameters (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR], image quality, diagnostic confidence) from a standard brain magnetic resonance imaging examination encompassing common neurological disorders such as demyelinating disease, gliomas, cerebrovascular disease, and epilepsy, with comparable sequence protocols and acquisition times at 3 T and at 7 T. MATERIALS AND METHODS Ten healthy volunteers and 4 subgroups of 40 patients in total underwent comparable magnetic resonance protocols with standard diffusion-weighted imaging, 2D and 3D turbo spin echo, 2D and 3D gradient echo and susceptibility-weighted imaging of the brain (10 sequences) at 3 T and 7 T. The subgroups comprised patients with either lesional (n = 5) or nonlesional (n = 4) epilepsy, intracerebral tumors (n = 11), demyelinating disease (n = 11) (relapsing-remitting multiple sclerosis [MS, n = 9], secondary progressive MS [n = 1], demyelinating disease not further specified [n = 1]), or chronic cerebrovascular disorders [n = 9]). For quantitative analysis, SNR and CNR were determined. For a semiquantitative assessment of the diagnostic confidence, a 10-point scale diagnostic confidence score (DCS) was applied. Two experienced radiologists with additional qualification in neuroradiology independently assessed, blinded to the field strength, 3 pathology-specific imaging criteria in each of the 4 disease groups and rated their diagnostic confidence. The overall image quality was semiquantitatively assessed using a 4-point scale taking into account whether diagnostic decision making was hampered by artifacts or not. RESULTS Without correction for spatial resolution, SNR was higher at 3 T except in the T2 SPACE 3D, DWI single shot, and DIR SPACE 3D sequences. The SNR corrected by the ratio of 3 T/7 T voxel sizes was higher at 7 T than at 3 T in 10 of 11 sequences (all except for T1 MP2RAGE 3D).In CNR, there was a wide variation between sequences and patient cohorts, but average CNR values were broadly similar at 3 T and 7 T.DCS values for all 4 pathologic entities were higher at 7 T than at 3 T. The DCS was significantly higher at 7 T for diagnosis and exclusion of cortical lesions in vascular disease. A tendency to higher DCS at 7 T for cortical lesions in MS was observed, and for the depiction of a central vein and iron deposits within MS lesions. Despite motion artifacts, DCS values were higher at 7 T for the diagnosis and exclusion of hippocampal sclerosis in mesial temporal lobe epilepsy (improved detection of the hippocampal subunits). Interrater agreement was 69.7% at 3 T and 93.3% at 7 T. There was no significant difference in the overall image quality score between 3 T and 7 T taking into account whether diagnostic decision making was hampered by artifacts or not. CONCLUSIONS Ultra-high-field magnetic resonance imaging at 7 T compared with 3 T yielded an improved diagnostic confidence in the most frequently encountered neurologic disorders. Higher spatial resolution and contrast were identified as the main contributory factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ovine lumbar intervertebral disc is a useful model for the human lumbar disc. We present preliminary estimates of diffusion coefficients and T-2 relaxation times in a pilot MRI study of the ovine lumbar intervertebral disc during uniaxial compression in vitro, and identify factors that hamper the ability to accurately monitor the temporal evolution of the effective diffusion tensor at high spatial resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimum bandwidth for shallow, high-resolution seismic reflection differs from that required for conventional petroleum reflection. An understanding of this issue is essential for correct choice of acquisition instrumentation. Numerical modelling of simple Bowen Basin coal structures illustrates that, for high-resolution imaging, it is important to accurately record all frequencies up to the limit imposed by earth scattering. On the contrary, the seismic image is much less dependent on frequencies at the lower end of the spectrum. These quantitative observations support the use of specialised high-frequency geophones for high-resolution seismic imaging. Synthetic seismic inversion trials demonstrate that, irrespective of the bandwidth of the seismic data, additional low-frequency impedance control is essential for accurate inversion. Inversion provides no compelling argument for the use of conventional petroleum geophones in the high-resolution arena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the application of multispectral imaging to several novel oximetry applications. Chapter 1 motivates optical microvascular oximetry, outlines oxygen transport in the body, describes the theory of oximetry, and describes the challenges associated with in vivo oximetry, in particular imaging through tissue. Chapter 2 reviews various imaging techniques for quantitative in vivo oximetry of the microvasculature, including multispectral and hyperspectral imaging, photoacoustic imaging, optical coherence tomography, and laser speckle techniques. Chapter 3 describes a two-wavelength oximetry study of two microvascular beds in the anterior segment of the eye: the bulbar conjunctival and episcleral microvasculature. This study reveals previously unseen oxygen diffusion from ambient air into the bulbar conjunctival microvasculature, altering the oxygen saturation of the bulbar conjunctiva. The response of the bulbar conjunctival and episcleral microvascular beds to acute mild hypoxia is quantified and the rate at which oxygen diffuses into bulbar conjunctival vessels is measured. Chapter 4 describes the development and application of a highly novel non-invasive retinal angiography technique: Oximetric Ratio Contrast Angiography (ORCA). ORCA requires only multispectral imaging and a small perturbation of blood oxygen saturation to produce angiographic sequences. A pilot study of ORCA in human subjects was conducted. This study demonstrates that ORCA can produce angiographic sequences with features such as sequential vessel filling and laminar flow. The application and challenges of ORCA are discussed, with emphasis on comparison with other angiography techniques, such as fluorescein angiography. Chapter 5 describes the development of a multispectral microscope for oximetry in the spinal cord dorsal vein of rats. Measurements of blood oxygen saturation are made in the dorsal vein of both healthy rats, and in rats with the Experimental autoimmune encephalomyelitis (EAE) disease model of multiple sclerosis. The venous blood oxygen saturation of EAE disease model rats was found to be significantly lower than that of healthy controls, indicating increased oxygen uptake from blood in the EAE disease model of multiple sclerosis. Chapter 6 describes the development of video-rate red eye oximetry; a technique which could enable stand-off oximetry of the blood-supply of the eye with high temporal resolution. The various challenges associated with video-rate red eye oximetry are investigated and their influence quantified. The eventual aim of this research is to track circulating deoxygenation perturbations as they arrive in both eyes, which could provide a screening method for carotid artery stenosis, which is major risk-factor for stroke. However, due to time constraints, it was not possible to thoroughly investigate if video-rate red eye can detect such perturbations. Directions and recommendations for future research are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current gold standard for the design of orthopaedic implants is 3D models of long bones obtained using computed tomography (CT). However, high-resolution CT imaging involves high radiation exposure, which limits its use in healthy human volunteers. Magnetic resonance imaging (MRI) is an attractive alternative for the scanning of healthy human volunteers for research purposes. Current limitations of MRI include difficulties of tissue segmentation within joints and long scanning times. In this work, we explore the possibility of overcoming these limitations through the use of MRI scanners operating at a higher field strength. We quantitatively compare the quality of anatomical MR images of long bones obtained at 1.5 T and 3 T and optimise the scanning protocol of 3 T MRI. FLASH images of the right leg of five human volunteers acquired at 1.5 T and 3 T were compared in terms of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The comparison showed a relatively high CNR and SNR at 3 T for most regions of the femur and tibia, with the exception of the distal diaphyseal region of the femur and the mid diaphyseal region of the tibia. This was accompanied by an ~65% increase in the longitudinal spin relaxation time (T1) of the muscle at 3 T compared to 1.5 T. The results suggest that MRI at 3 T may be able to enhance the segmentability and potentially improve the accuracy of 3D anatomical models of long bones, compared to 1.5 T. We discuss how the total imaging times at 3 T can be kept short while maximising the CNR and SNR of the images obtained.