955 resultados para hematopoietic stem cell
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.
Resumo:
Hematopoietic stem cells (HSC) are unique in that they give rise both to new stem cells (self-renewal) and to all blood cell types. The cellular and molecular events responsible for the formation of HSC remain unknown mainly because no system exists to study it. Embryonic stem (ES) cells were induced to differentiate by coculture with the stromal cell line RP010 and the combination of interleukin (IL) 3, IL-6, and F (cell-free supernatants from cultures of the FLS4.1 fetal liver stromal cell line). Cell cytometry analysis of the mononuclear cells produced in the cultures was consistent with the presence of PgP-1+ Lin- early hematopoietic (B-220- Mac-1- JORO 75- TER 119-) cells and of fewer B-220+ IgM- B-cell progenitors and JORO 75+ T-lymphocyte progenitors. The cell-sorter-purified PgP-1+ Lin- cells produced by induced ES cells could repopulate the lymphoid, myeloid, and erythroid lineages of irradiated mice. The ES-derived PgP-1+ Lin- cells must possess extensive self-renewal potential, as they were able to produce hematopoietic repopulation of secondary mice recipients. Indeed, marrow cells from irradiated mice reconstituted (15-18 weeks before) with PgP-1+ Lin- cell-sorter-purified cells generated by induced ES cells repopulated the lymphoid, myeloid, and erythroid lineages of secondary mouse recipients assessed 16-20 weeks after their transfer into irradiated secondary mice. The results show that the culture conditions described here support differentiation of ES cells into hematopoietic cells with functional properties of HSC. It should now be possible to unravel the molecular events leading to the formation of HSC.
Resumo:
Afin d’effectuer des études fonctionnelles sur le génome de la souris, notre laboratoire a généré une bibliothèque de clones de cellules souches embryonnaires (ESC) présentant des suppressions chromosomiques chevauchantes aléatoires – la bibliothèque DELES. Cette bibliothèque contient des délétions couvrant environ 25% du génome murin. Dans le laboratoire, nous comptons identifier de nouveaux déterminants du destin des cellules hématopoïétiques en utilisant cet outil. Un crible primaire utilisant la benzidine pour démontrer la présence d'hémoglobine dans des corps embryoïdes (EBS) a permis d’identifier plusieurs clones délétés présentant un phénotype hématopoïétique anormal. Comme cet essai ne vérifie que la présence d'hémoglobine, le but de mon projet est d'établir un essai in vitro de différenciation des ESC permettant de mesurer le potentiel hématopoïétique de clones DELES. Mon hypothèse est que l’essai de différenciation hématopoïétique publié par le Dr Keller peut être importé dans notre laboratoire et utilisé pour étudier l'engagement hématopoïétique des clones DELES. À l’aide d’essais de RT-QPCR et de FACS, j’ai pu contrôler la cinétique de différenciation hématopoïétique en suivant l’expression des gènes hématopoïétiques et des marqueurs de surface comme CD41, c-kit, RUNX1, GATA2, CD45, β-globine 1 et TER-119. Cet essai sera utilisé pour valider le potentiel hématopoïétique des clones DELES candidats identifiés dans le crible principal. Mon projet secondaire vise à utiliser la même stratégie rétro-virale a base de Cre-loxP utilisée pour générer la bibliothèque DELES pour générer une bibliothèque de cellules KBM-7 contenant des suppressions chromosomiques chevauchantes. Mon but ici est de tester si la lignée cellulaire leuémique humaine presque haploïde KBM-7 peut être exploitée en utilisant l'approche DELES pour créer cette bibliothèque. La bibliothèque de clones KBM-7 servira à définir les activités moléculaires de drogues anti-leucémiques potentielless que nous avons identifiées dans le laboratoire parce qu’elles inhibent la croissance cellulaire dans plusieurs échantillons de leucémie myéloïde aiguë dérivés de patients. Elle me permettra également d'identifier les voies de signalisation moléculaires qui, lorsque génétiquement perturbées, peuvent conférer une résistance à ces drogues.
Resumo:
As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.
Resumo:
Even though the involvement of intracellular Ca(2+) (Ca(i)(2+)) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3)) levels and Ca(i)(2+) release in murine and human hematopoietic stem/ progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+)-dependent kinases in MEK activation. In addition, we identify phospholipase C gamma 2 (PLC gamma 2) as a PLC gamma responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCg inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLC gamma 2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/ progenitor cells. J. Cell. Physiol. 226: 1780-1792, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
To better understand the early events regulating lineage-specific hematopoietic differentiation, we analyzed the transcriptional profiles of CD34+ human hematopoietic stem and progenitor cells (HSPCs) subjected to differentiation stimulus. CD34+ cells were cultured for 12 and 40 h in liquid cultures with supplemented media favoring myeloid or erythroid commitment. Serial analysis of gene expression (SAGE) was employed to generate four independent libraries. By analyzing the differentially expressed regulated transcripts between the un-stimulated and the stimulated CD34+ cells, we observed a set of genes that was initially up-regulated at 12 h but were then down-regulated at 40 h, exclusively after myeloid stimulus. Among those we found transcripts for NFKB2, RELB, IL1B, LTB, LTBR, TNFRSF4, TGFB1, and IKBKA. Also, the inhibitor NFKBIA (IKBA) was more expressed at 12 h. All those transcripts code for signaling proteins of the nuclear factor kappaB pathway. NFKB2 is a subunit of the NF-kappa B transcription factor that with RELB mediates the non-canonical NF-kappa B pathway. Interference RNA (RNAi) against NFKB1, NFKB2 and control RNAi were transfected into bone marrow CD34+HSPC. The percentage and the size of the myeloid colonies derived from the CD34+ cells decreased after inhibition of NFKB2. Altogether, our results indicate that NFKB2 gene has a role in the early commitment of CD34+HSPC towards the myeloid lineage. (C) 2010 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cardiovascular disease is among the main causes of mortality and morbidity worldwide. Despite significant advances in medical and interventional therapy, the prognosis of conditions such as ischemic heart disease is still dismal. There is thus a need to investigate new therapeutic tools, one of which is stem cell therapy. Hematopoietic stem cells are the most studied type, and the fact that their biology is relatively well understood has led to their being used in preclinical research and clinical trials. However, the results of some of these studies have been controversial, which has opened the way for studies on other cell types, such as mesenchymal stem cells. These cells have immunomodulatory properties which suggest that they have therapeutic potential in cardiology. In the present article, the authors review the state of the art regarding mesenchymal stem cells, from basic and translational research to their use in clinical trials on ischemic heart disease, heart failure and arrhythmias, and discuss possible future uses.
Resumo:
BACKGROUND: The value of adenovirus plasma DNA detection as an indicator for adenovirus disease is unknown in the context of T cell-replete hematopoietic cell transplantation, of which adenovirus disease is an uncommon but serious complication. METHODS: Three groups of 62 T cell-replete hematopoietic cell transplant recipients were selected and tested for adenovirus in plasma by polymerase chain reaction. RESULTS: Adenovirus was detected in 21 (87.5%) of 24 patients with proven adenovirus disease (group 1), in 4 (21%) of 19 patients who shed adenovirus (group 2), and in 1 (10.5%) of 19 uninfected control patients. The maximum viral load was significantly higher in group 1 (median maximum viral load, 6.3x10(6) copies/mL; range, 0 to 1.0x10(9) copies/mL) than in group 2 (median maximum viral load, 0 copies/mL; range, 0 to 1.7x10(8) copies/mL; P<.001) and in group 3 (median maximum viral load, 0 copies/mL; range 0-40 copies/mL; P<.001). All patients in group 2 who developed adenoviremia had symptoms compatible with adenovirus disease (i.e., possible disease). A minimal plasma viral load of 10(3) copies/mL was detected in all patients with proven or possible disease. Adenoviremia was detectable at a median of 19.5 days (range, 8-48 days) and 24 days (range, 9-41 days) before death for patients with proven and possible adenovirus disease, respectively. CONCLUSION: Sustained or high-level adenoviremia appears to be a specific and sensitive indicator of adenovirus disease after T cell-replete hematopoietic cell transplantation. In the context of low prevalence of adenovirus disease, the use of polymerase chain reaction of plasma specimens to detect virus might be a valuable tool to identify and treat patients at risk for viral invasive disease.
Resumo:
In the mouse, over the last 20 years, a set of cell-surface markers and activities have been identified, enabling the isolation of bone marrow (BM) populations highly enriched in hematopoietic stem cells (HSCs). These HSCs have the ability to generate multiple lineages and are capable of long-term self-renewal activity such that they are able to reconstitute and maintain a functional hematopoietic system after transplantation into lethally irradiated recipients. Using single-cell reconstitution assays, various marker combinations can be used to achieve a functional HSC purity of almost 50%. Here we have used the differential expression of six of these markers (Sca1, c-Kit, CD135, CD48, CD150, and CD34) on lineage-depleted BM to refine cell hierarchies within the HSC population. At the top of the hierarchy, we propose a dormant HSC population (Lin(-)Sca1(+)c-Kit(+) CD48(-)CD150(+)CD34(-)) that gives rise to an active self-renewing CD34(+) HSC population. HSC dormancy, as well as the balance between self-renewal and differentiation activity, is at least, in part, controlled by the stem cell niches individual HSCs are attached to. Here we review the current knowledge about HSC niches and propose that dormant HSCs are located in niches at the endosteum, whereas activated HSCs are in close contact to sinusoids of the BM microvasculature.
Resumo:
Adult stem cells hold many promises for future clinical applications and regenerative medicine. The haematopoietic stem cell (HSC) is the best-characterized somatic stem cell so far, but in vitro expansion has been unsuccessful, limiting the future therapeutic potential of these cells. Here we review recent progress in characterizing the composition of the HSC bone-marrow microenvironment, known as the HSC niche. During homeostasis, HSCs, and therefore putative bone-marrow HSC niches, are located near bone surfaces or are associated with the sinusoidal endothelium. The molecular crosstalk between HSCs and the cellular constituents of these niches is thought to control the balance between HSC self-renewal and differentiation, indicating that future successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem-cell-niche unit.
Resumo:
Résumé : c-Myc, le premier facteur de transcription de la famille Myc a été découvert il y a maintenant trente ans. Il reste à l'heure actuelle parmi les plus puissants proto-oncogènes connus. c-Myc est dérégulé dans plus de 50% des cancers, où il promeut la prolifération, la croissance cellulaire, et la néoangiogenèse. Myc peut aussi influencer de nombreuses autres fonctions de par sa capacité à activer ou à réprimer la transcription de nombreux gènes, et à agir globalement sur le génome à travers des modifications épigénétiques de la chromatine. La famille d'oncogènes Myc comprend, chez les mammifères, trois protéines structurellement proches: c-Myc, N-Myc et L-Myc. Ces protéines ont les mêmes proprietés biochimiques, exercent les mêmes fonctions mais sont le plus souvent exprimées de façon mutuellement exclusive. Myc a été récemment identifié comme un facteur clef dans la maintenance des cellules souches embryonnaires et adultes ainsi que dans la réacquisition des proprietés des cellules souches. Nous avons précédemment démontré que l'élimination de c-Myc provoque une accumulation de cellules souches hématopoïétiques (CSH) suite à un défaut de différenciation lié à la niche. Les CSH sont responsables de la production de tous les éléments cellulaires du sang pour toute la vie de l'individu et sont définies par leur capacité à s'auto-renouveler tout en produisant des précurseurs hématopoïétiques. Afin de mieux comprendre la fonction de Myc dans les CSH, nous avons choisi de combiner l'utilisation de modèles de souris génétiquement modifiées à une caractérisation systématique des schémas d'expression de c-Myc, N-Myc et L-Myc dans tout le système hématopoïétique. Nous avons ainsi découvert que les CSH les plus immatures expriment des quantités équivalentes de transcrits de c-myc et N-myc. Si les CSH déficientes en N-myc seulement ont une capacité d'auto-renouvellement à long-terme réduite, l'invalidation combinée des gènes c-myc et N-myc conduit à une pan-cytopénie suivie d'une mort rapide de l'animal, pour cause d'apoptose de tous les types cellulaires hématopoïétiques. En particulier, les CSH en cours d'auto-renouvelemment, mais pas les CSH quiescentes, accumulent du Granzyme B (GrB), une molécule fortement cytotoxique qui provoque une mort cellulaire rapide. Ces données ont ainsi mis au jour un nouveau mécanisme dont dépend la survie des CSH, à savoir la répression du GrB, une enzyme typiquement utilisée par le système immunitaire inné pour éliminer les tumeurs et les cellules infectées par des virus. Dans le but d'évaluer l'étendue de la redondance entre c-Myc et N-Myc dans les CSH, nous avons d'une part examiné des souris dans lesquelles les séquences codantes de c-myc sont remplacées par celles de N-myc (NCR) et d'autre part nous avons géneré une série allèlique de myc en éliminant de façon combinatoire un ou plusieurs allèles de c-myc et/ou de N-myc. Alors que l'analyse des souris NCR suggère que c-Myc et N-Myc sont qualitativement redondants, la série allélique indique que les efficiences avec lesquelles ces deux protéines influencent des procédés essentiels à la maintenance des CSH sont différentes. En conclusion, nos données génétiques montrent que l'activité générale de MYC, fournie par c-Myc et N-Myc, contrôle plusieurs aspects cruciaux de la fonction des CSH, notamment l'auto-renouvellement, la survie et la différenciation. Abstract : c-Myc, the first Myc transcription factor was discovered 30 years ago and is to date one of the most potent proto-oncogenes described. It is found to be misregulated in over 50% of all cancers, where it drives proliferation, cell growth and neo-angiogenesis. Myc can also influence a variety of other functions, owing to its ability to activate and repress transcription of many target genes and to globally regulate the genome via epigenetic modifications of the chromatin. The Myc family of oncogenes consists of three closely related proteins in mammals: c-Myc, N-Myc and L-Myc. These proteins share the same biochemical properties, exert mostly the same functions, but are most often expressed in mutually exclusive patterns. Myc is now emerging as a key factor in maintenance of embryonic and adult stem cells as well as in reacquisition of stem cell properties, including induced reprogramming. We previously showed that c-Myc deficiency can cause the accumulation of hematopoietic stem cells (HSCs) due to a niche dependent differentiation defect. HSCs are responsible for life-long replenishment of all blood cell types, and are defined by their ability to self-renew while concomitantly giving rise to more commited progenitors. To gain further insight into the function of Myc in HSCs, in this study we combine the use of genetically-modified mouse models with the systematic characterization of c-myc, N-myc and L-myc transcription patterns throughout the hematopoietic system. Interestingly, the most immature HSCs express not only c-myc, but also about equal amounts of N-myc transcripts. Although conditional deletion of N-myc alone in the bone marrow does not affect steady-state hematopoiesis, N-myc null HSCs show impaired long-term self-renewal capacity. Strikingly, combined deficiency of c-Myc and N-Myc results in pan-cytopenia and rapid lethality, due to the apoptosis of most hematopoietic cell types. In particular, self-renewing HSCs, but not quiescent HSCs or progenitor cell types rapidly up-regulate and accumulate the potent cytotoxic molecule GranzymeB (GrB), causing their rapid cell death. These data uncover a novel pathway on which HSC survival depends on, namely repression of GrB, a molecule typically used by the innate immune system to eliminate tumor and virus infected cells. To evaluate the extent of redundancy between c-Myc and N-Myc in HSCs, we examined mice in which c-myc coding sequences are replaced by that of N-myc (NCR) and also generated an allelic series of myc, by combinatorially deleting one or several c-myc and/or N-myc alleles. While the analysis of NCR mice suggests that c-Myc and N-Myc are qualitatively functionally redundant, our allelic series indicates that the efficiencies with which these two proteins affect crucial HSC maintenance processes are likely to be distinct. Collectively, our genetic data show that general "MYC" activity delivered by c-Myc and N-Myc controls crucial aspects of HSC function, including self-renewal, survival and niche dependent differentiation.
Resumo:
Donor cell leukaemia (DCL) is a rare complication of allogenic hematopoietic cell transplantation (HCT). We report the case of a female patient with acute promyelocytic leukaemia (APL), FAB type M3, who developed acute myeloid leukaemia (AML) type M5 of donor origin 17 years after allogenic bone marrow transplantation (BMT) from her HLA-matched sister. Morphology and immunophenotyping showed differences with the initial leukaemia, and short tandem repeat (STR) analysis confirmed donor-type haematopoiesis. Interphase fluorescence in situ hybridisation (FISH) showed an 11q23 deletion. Given that the latency period between transplant and development of leukaemia was the longest reported to date, we discuss the mechanisms underlying delayed leukaemia onset.
Resumo:
In Europe, the combination of plerixafor + granulocyte colony-stimulating factor is approved for the mobilization of hematopoietic stem cells for autologous transplantation in patients with lymphoma and myeloma whose cells mobilize poorly. The purpose of this study was to further assess the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization in European patients with lymphoma or myeloma. In this multicenter, open label, single-arm study, patients received granulocyte colony-stimulating factor (10 μg/kg/day) subcutaneously for 4 days; on the evening of day 4 they were given plerixafor (0.24 mg/kg) subcutaneously. Patients underwent apheresis on day 5 after a morning dose of granulocyte colony-stimulating factor. The primary study objective was to confirm the safety of mobilization with plerixafor. Secondary objectives included assessment of efficacy (apheresis yield, time to engraftment). The combination of plerixafor + granulocyte colony-stimulating factor was used to mobilize hematopoietic stem cells in 118 patients (90 with myeloma, 25 with non-Hodgkin's lymphoma, 3 with Hodgkin's disease). Treatment-emergent plerixafor-related adverse events were reported in 24 patients. Most adverse events occurred within 1 hour after injection, were grade 1 or 2 in severity and included gastrointestinal disorders or injection-site reactions. The minimum cell yield (≥ 2 × 10(6) CD34(+) cells/kg) was harvested in 98% of patients with myeloma and in 80% of those with non-Hodgkin's lymphoma in a median of one apheresis. The optimum cell dose (≥ 5 × 10(6) CD34(+) cells/kg for non-Hodgkin's lymphoma or ≥ 6 × 10(6) CD34(+) cells/kg for myeloma) was harvested in 89% of myeloma patients and 48% of non-Hodgkin's lymphoma patients. In this prospective, multicenter European study, mobilization with plerixafor + granulocyte colony-stimulating factor allowed the majority of patients with myeloma or non-Hodgkin's lymphoma to undergo transplantation with minimal toxicity, providing further data supporting the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization of hematopoietic stem cells in patients with non-Hodgkin's lymphoma or myeloma.
Resumo:
Hematopoietic stem cells (HSCs), with their dual ability for self-renewal and multilineage differentiation, constitute an essential component of hematopoietic transplantations. Human fetal liver (FL) represents a promising alternative HSC source, and we previously reported simple culture conditions allowing long-term expansion of FL hematopoietic progenitors. In the present study, we used the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenotransplantation assay to confirm that human FL is rich in NOD/SCID-repopulating cells (SRCs) and to show that these culture conditions repeatedly maintained short- and long-term SRCs from various FL samples for at least 28 days. Quantitative limited dilution analysis in NOD/SCID mice demonstrated for the first time that a 10- to over a 100-fold net expansion of FL SRCs could be achieved after 28 days of culture. The efficiency of this culture system may lead to an increase in the use of FL as a source of HSCs for transplantation in adult patients, as previously demonstrated with umbilical cord blood under different culture conditions.