849 resultados para haptic eye
Resumo:
Retinal diseases are nowadays the most common causes of vision threatening in developed countries. Therapeutic advances in this field are hindered by the difficulty to deliver drugs to the posterior segment of the eye. Due to anatomical barriers, the ocular biodisponibility of systemically administered drugs remains poor, and topical instillation is not adequate to achieve therapeutic concentrations of drugs in the back of the eye. Ocular drug delivery has thus become one of the main challenges of modern ophthalmology. A multidisciplinary research is being conducted worldwide including pharmacology, biomaterials, ophthalmology, pharmaceutics, and biology. New promising fields have been developed such as implantable or injectable slow release intravitreal devices and degradable polymers, dispersed polymeric systems for intraocular drug delivery, and transscleral delivery devices such as iontophoresis, osmotic pumps or intra-scleraly implantable materials. The first clinical applications emerging from this research are now taking place, opening new avenues for the treatment of retinal diseases.
Resumo:
The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.
Resumo:
The biological consequences of constitutive fibroblast growth factor-4 (fgf4) expression have been analysed during anterior CNS development of mouse chimeric embryos. Severe mutant embryos exhibit exencephaly, absence of eye development and anomalous differentiation of neuropithelium. These embryos also show ectopic limb buds resembling the early phases of limb development. Because our results show that anterior CNS in those chimeric embrios does not express shh ectopically, we suggest that malformations may be due to interference between the ectopic expression of fgf4 in the cephalic area and the receptors for the members of the FGF family that regulate brain and eye development, namely fgf8. If this is correct, the results indirectly suport the crucial role of fgf8 in patterning the anterior CNS.
Resumo:
PURPOSE: The aim of the present study was the in vitro and in vivo evaluation of a novel aqueous formulation based on polymeric micelles for the topical delivery of cyclosporine A for dry eye treatment. METHODS: In vitro experiments were carried out on primary rabbit corneal cells, which were characterized by immunocytochemistry using fluorescein-labeled lectin I/isolectin B4 for the endothelial cells and mouse monoclonal antibody to cytokeratin 3+12 for the epithelial ones. Living cells were incubated for 1 hour or 24 hours with a fluorescently labeled micelle formulation and analyzed by fluorescence microscopy. In vivo evaluations were done by Schirmer test, osmolarity measurement, CyA kinetics in tears, and CyA ocular distribution after topical instillation. A 0.05% CyA micelle formulation was compared to a marketed emulsion (Restasis). RESULTS: The in vitro experiments showed the internalization of micelles in the living cells. The Schirmer test and osmolarity measurements demonstrated that micelles did not alter the ocular surface properties. The evaluation of the tear fluid gave similar CyA kinetics values: AUC = 2339 ± 1032 min*μg/mL and 2321 ± 881.63; Cmax = 478 ± 111 μg/mL and 451 ± 74; half-life = 36 ± 9 min and 28 ± 9 for the micelle formulation and Restasis, respectively. The ocular distribution investigation revealed that the novel formulation delivered 1540 ± 400 ng CyA/g tissue to the cornea. CONCLUSIONS: The micelle formulation delivered active CyA into the cornea without evident negative influence on the ocular surface properties. This formulation could be applied for immune-related ocular surface diseases.
Resumo:
The current study investigated cognitive resource allocation in discourse processing by means of pupil dilation and behavioral measures. Short question-answer dialogs were presented to listeners. Either the context question queried a new information focus in the successive answer, or else the context query was corrected in the answer sentence (correction information). The information foci contained in the answer sentences were either adequately highlighted by prosodic means or not. Participants had to judge the adequacy of the focus prosody with respect to the preceding context question. Prosodic judgment accuracy was higher in the conditions bearing adequate focus prosody than in the conditions with inadequate focus prosody. Latency to peak pupil dilation was longer when new information foci were perceived compared to correction foci. Moreover, for the peak dilation, an interaction of focus type and prosody was found. Post hoc statistical tests revealed that prosodically adequate correction focus positions were processed with smaller peak dilation in comparison to all other dialog conditions. Thus, pupil dilation and results of a principal component analysis suggest an interaction of focus type and focus prosody in discourse processing.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.
Resumo:
Weekly Newsletter from the Northwest District Office for libraries containing programs, activities, classes for the upcoming week.