935 resultados para habitat structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Study describes the community of all metazoan parasites from 14 individuals of thicklip wrasse, Hemigymnus melapterus, from Lizard Island, Australia. All fish were parasitized, and 4,649 parasite individuals were found. Twenty-six parasite species were identified although only 6 species were abundant and prevalent: gnathiid isopods, the copepod Hatschekia hemigymni, the digenean Callohelmis pichelinae, and 3 morphotypes of tetraphyllidean cestode larvae. We analyzed whether the body size and microhabitat of the parasites and size of the host affected understanding of the structure of the parasite community. We related the abundance, biovolume, and density of parasites with the host body size and analyzed the abundances and volumetric densities of some parasite species within microhabitats. Although the 2 most abundant species comprised 75% of all parasite individuals, 4 species, each in similar proportion, comprised 85% of the total biovolume. Although larger host individuals had higher richness, abundance, and biovolume of parasites than smaller individuals, overall parasite volumetric density actually decreased with the host body size. Moreover. parasites exhibited abundances and densities significantly different among microhabitats; some parasite species depended on the area available, whereas others selected a specific microhabitat. Parasite and habitat size exhibited interesting relationships that should be considered more frequently. Considerations of these parameters improve understanding of parasite community structure and how the parasites use their habitats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species' range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and signifcant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale (< 10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining 'connected' brush-tailed rock-wallaby colonies in the northern parts of the species' range and the remnant endangered populations in the south.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmental heterogeneity in coastal lagoons is expected to facilitate local adaptation in response to different ecological conditions, causing significant genetic structuring within lagoon populations at a small scale and also differentiation between lagoons. However, these patterns and processes of genetic structuring are still poorly understood. The aims of our study were (1) to seek genetic structure at a small scale in Cerastoderma glaucum inside the Mar Menor coastal lagoon using a mitochondrial DNA marker (COI) that has previously detected genetic differentiation inside the lagoon in other species and (2) to evaluate the influence of extreme environmental conditions and habitat discontinuity on its genetic composition. The results indicate high levels of haplotype diversity and low values of nucleotide diversity. COI data provide evidence of significant population differentiation among some localities within the lagoon. Limited gene flow and unstable population dynamics (i.e. fluctuations in population size caused by local extinction and recolonization), probably due to the high environmental heterogeneity, could generate the small-scale genetic divergence detected between populations within the lagoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. A diverse array of patterns has been reported regarding the spatial extent of population genetic structure and effective dispersal in freshwater macroinvertebrates. In river systems, the movements of many taxa can be restricted to varying degrees by the natural stream channel hierarchy. 2. In this study, we sampled populations of the non-biting freshwater midge Echinocladius martini in the Paluma bioregion of tropical northeast Queensland to investigate fine scale patterns of within- and among-stream dispersal and gene flow within a purported historical refuge. We amplified a 639 bp fragment of mitochondrial COI and analysed genetic structure using pairwise ΦST, hierarchical AMOVA, Mantel tests and a parsimony network. Genetic variation was partitioned among stream sections using Streamtree to investigate the effect of potential instream dispersal barriers. 3. The data revealed strong natal site fidelity and significant differentiation among neighbouring, geographically proximate streams. We found evidence for only episodic adult flight among sites on separate stream reaches. Overall, however, our data suggested that both larval and adult dispersal was largely limited to within a stream channel. 4. This may arise from a combination of the high density of riparian vegetation physically restricting dispersal and from the joint effects of habitat stability and large population sizes. Together these may mitigate the requirement for movement among streams to avoid inbreeding and local extinction due to habitat change and may thus enable persistence of upstream populations in the absence of regular compensatory upstream flight. Taken together, these data suggest that dispersal of E. martini is highly restricted, to the scale of only a few kilometres, and hence occurs predominantly within the natal stream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Giant Long-Armed Prawn, Macrobrachium lar is a freshwater species native to the Indo-Pacific. M. lar has a long-lived, passive, pelagic marine larval stage where larvae need to colonise freshwater within three months to complete their development. Dispersal is likely to be influenced by the extensive distances larvae must transit between small oceanic islands to find suitable freshwater habitat, and by prevailing east to west wind and ocean currents in the southern Pacific Ocean. Thus, both intrinsic and extrinsic factors are likely to influence wild population structure in this species. The present study sought to define the contemporary broad and fine-scale population genetic structure of Macrobrachium lar in the south-western Pacific Ocean. Three polymorphic microsatellite loci were used to assess patterns of genetic variation within and among 19 wild adult sample sites. Statistical procedures that partition variation implied that at both spatial scales, essentially all variation was present within sample sites and differentiation among sites was low. Any differentiation observed also was not correlated with geographical distance. Statistical approaches that measure genetic distance, at the broad-scale, showed that all south-western Pacific Islands were essentially homogeneous, with the exception of a well supported divergent Cook Islands group. These findings are likely the result of some combination of factors that may include the potential for allelic homoplasy, through to the effects of sampling regime. Based on the findings, there is most likely a divergent M. lar Cook Islands clade in the south-western Pacific Ocean, resulting from prevailing ocean currents. Confirmation of this pattern will require a more detailed analysis of nDNA variation using a larger number of loci and, where possible, use of larger population sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population genetic studies of freshwater invertebrate taxa in New Zealand and South America are currently few despite the geologically and climatically dynamic histories of these regions. The focus of our study was a comparison of the influence on realized dispersal of 2 closely related nonbiting midges (Chironomidae) of population fragmentation on these separated austral land masses. We used a 734-base pair (bp) fragment of cytochrome c oxidase subunit I (COI) to investigate intraspecific genetic structure in Naonella forsythi Boothroyd in New Zealand and Ferringtonia patagonica Edwards in Patagonia. We proposed hypotheses about their potential dispersal and, hence, expected patterns of genetic structure in these 2 species based on published patterns for the closely related Australian taxon Echinocladius martini Cranston. Genetic structure revealed for both N. forsythi and F. patagonica was characterized by several highly divergent (2.0–10.5%) lineages of late Miocene–Pliocene age within each taxon that were not geographically localized. Many were distributed widely. This pattern differed greatly from population structure in E. martini, which was typified by much greater endemicity of divergent genetic lineages. Nevertheless, diversification of lineages in all 3 taxa appeared to be temporally congruent with the onset of late Miocene glaciations in the southern hemisphere that may have driven fragmentation of suitable habitat, promoting isolation of populations and divergence in allopatry. We argue that differences in realized dispersal post-isolation may be the result of differing availability of suitable habitat in interglacial periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). FST between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; FST was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents