299 resultados para grapes
Resumo:
La Garnatxa negra és la varietat negra autòctona i majoritària a la Denominació d’Origen Empordà. La facilitat actual per obtenir rendiments elevats (selecció clonal, terrenys fèrtils, pràctiques agrícoles, ...) obliga a regular-ne la producció per obtenir collites de qualitat. L’eliminació d’una part de la collita mitjançant l’aclarida manual ha estat una pràctica efectiva i àmpliament utilitzada per la millora de la qualitat en situacions puntuals de sobreproducció. Però els seus elevats costos de mà d’obra la fan privativa per a la majoria de productors. L’aclarida química amb Etefon es perfila com una bona alternativa a l’hora de regular la producció amb uns costos d’execució acceptables. L’objectiu del treball era provar l’eficàcia de l’Etefon com a aclaridor químic en vinya per a la varietat Garnatxa negra com a alternativa a l’aclarida manual tradicional
Resumo:
Epidemiological evidence suggests that polyphenols may, in part, explain the cardioprotective properties of fruits. This review aims to summarise the evidence for the effects of fruit polyphenols on four risk factors of CVD: platelet function, blood pressure, vascular function and blood lipids. This review includes human dietary intervention studies investigating fruits and their polyphenols. There was some evidence to suggest that fruits containing relatively high concentrations of flavonols, anthocyanins and procyanindins, such as pomegranate, purple grapes and berries, were effective at reducing CVD risk factors, particularly with respect to anti-hypertensive effects, inhibition of platelet aggregation and increasing endothelial-dependent vasodilation than other fruits investigated. Flavanone-rich fruits, such as oranges and grapefruits, were reported to have hypocholesterolaemic effects, with little impact on other risk factors being examined. However, the evidence was limited, inconsistent and often inconclusive. This is in part due to the heterogeneity in the design of studies, the lack of controls, the relatively short intervention periods and low power in several studies. Details of the polyphenol content of the fruits investigated were also omitted in some studies, negating comparison of data. It is recommended that large, well-powered, long-term human dietary intervention studies investigating a wider range of fruits are required to confirm these observations. Investigations into the potential synergistic effects of polyphenols on a combination of CVD risk markers, dose–response relationships and standardisation in methodology would facilitate the comparison of studies and also provide valuable information on the types of fruits which could confer protection against CVD.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
Peru agricultural exports have increased in recent years due to (i) free trade agreements with many countries (United States, Canada, European Union, China, Thailand, Singapore, Japan, Chile, among others), (ii) an increasing international demand for healthy products, (iii) country´s economic development and (iv) more private investments in this sector (Velazco 2012). Also, if we can compare among Peru three main regions (Coast, Andean highlands and the Jungle), It is the Coast (western region) that has a developed agricultural production due to unique weather conditions, private investments, public infrastructure, transport costs and quality of land (Gomez, 2008). This country development is also related to the production of non-traditional products for export like asparagus, artichokes, capsicums, bananas, grapes, among others; produced by agro industrial companies and small farmers and that are mainly labor intensive (Gomez, 2008 and Velazco, 2012). This very successful export diversification and self-discovery process was the result of a combination of strong natural comparative advantages (mainly excellent agro climatic conditions) and a significant innovation effort. It meant the introduction and expansion of new products and markets, the entry of new firms, and experimental research and the adoption of new techniques and process technologies developed abroad (in irrigation, crop management, post-harvesting, sanitary control, storage and packing) to produce high-quality, niche (gourmet) and higher value-added products, in line with consumer trends in sophisticated food markets. In products such as asparagus, mango, organic coffee and capsicums, Peru has become a leading world exporter (OECD). For this reason one of the government main tasks for the next years is to meet urgent agriculture producer’s needs in the areas of technological Innovation and business management (MINAG). In this context, this thesis analyzes the applicability of a new technology – the mechatronic arms – specifically to capsicums production sector in Peru. We chose Capsicums production sector (paprika, chilli pepper) because is mainly labor intensive and is the sector where my family company (DIROSE SAC) operates. This innovation consists in a 40 arms mechatronic combine, and it was first created in order to improve the efficiency on the labor intensive phase of harvest for this kind of agriculture products. It is estimated that a laborer with brief training operating the machine would be equivalent to 40 people that not only would work during daytime, but also on the night shift as well. Also, using this new technology can allow a company to make additional crops that would increase their yields and annual revenues. This thesis was developed as a business plan to make this new product available for other agriculture companies that operates in the capsicums production sector in Peru; however, this new technology has the potential to be modified in order to be available to other kind of agriculture products, in Peru and other countries.
Resumo:
This study represents the first phytochemical research of phenolic components of Sercial and Tinta Negra Vitis vinifera L. The phenolic profiles of Sercial and Tinta Negra V. vinifera L. grape skins (white and red varieties, respectively) were established using high performance liquid chromatography–diode array detection–electrospray ionisation tandem mass spectrometry (HPLC–DAD–ESI-MSn), at different ripening stages (véraison and maturity). A total of 40 phenolic compounds were identified, which included 3 hydroxybenzoic acids, 8 hydroxycinnamic acids, 4 flavanols, 5 flavanones, 8 flavonols, 4 stilbenes, and 8 anthocyanins. For the white variety, in both ripening stages, hydroxycinnamic acids and flavonols were the main phenolic classes, representing about 80% of the phenolic composition. For red variety, at véraison, hydroxycinnamic acids and flavonols were also the predominant classes (71%), but at maturity, anthocyanins represented 84% of the phenolic composition. As far as we know, 10 compounds were reported for the first time in V. vinifera L. grapes, namely protocatechuic acid-glucoside, p-hydroxybenzoyl glucoside, caftaric acid vanilloyl pentoside, p-coumaric acid-erythroside, naringenin hexose derivate, eriodictyol-glucoside, taxifolin-pentoside, quercetin-glucuronide-glucoside, malylated kaempferol-glucoside, and resveratrol dimer. These novel V. vinifera L. grape components were identified based on their MSn fragmentation profile. This data represents valuable information that may be useful to oenological management and to valorise these varieties as sources of bioactive compounds.
Resumo:
The volatiles (VOCs) and semi-volatile organic compounds (SVOCs) responsible for aroma are mainly present in skin of grape varieties. Thus, the present investigation is directed towards the optimisation of a solvent free methodology based on headspace-solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry (GC–qMS) in order to establish the global volatile composition in pulp and skin of Bual and Bastardo Vitis vinifera L. varieties. A deep study on the extraction-influencing parameters was performed, and the best results, expressed as GC peak area, number of identified compounds and reproducibility, were obtained using 4 g of sample homogenised in 5 mL of ultra-pure Milli-Q water in a 20 mL glass vial with addition of 2 g of sodium chloride (NaCl). A divinylbenzene/carboxen/polydimethylsiloxane fibre was selected for extraction at 60 °C for 45 min under continuous stirring at 800 rpm. More than 100 VOCs and SVOCs, including 27 monoterpenoids, 27 sesquiterpenoids, 21 carbonyl compounds, 17 alcohols (from which 2 aromatics), 10 C13 norisoprenoids and 5 acids were identified. The results showed that, for both grape varieties, the levels and number of volatiles in skin were considerably higher than those observed in pulp. According to the data obtained by principal component analysis (PCA), the establishment of the global volatile signature of grape and the relationship between different part of grapes—pulp and skin, may be an useful tool to winemaker decision to define the vinification procedures that improves the organoleptic characteristics of the corresponding wines and consequently contributed to an economic valorization and consumer acceptance.
Resumo:
The aerial spraying of plant ripeners on sugar cane (Saccharum officinarum L.) crops causes often the contamination of neighboring areas, which subsidizes formal complaints from the neighbors. These contaminations are due to spraying taking place during inadequate environmental conditions or from technical mistakes during the application. One of the most important causes of this contamination is the susceptibility of the species being cultivated surrounding sugar cane. In order to evaluate the effects of sugar cane plant ripeners trinexapac-ethyl and sulfometuron-methyl on peanuts, cotton, potato, coffee, citrus, beans, sunflower, cassava, rubber, soybean, and grapes, eleven experiments - one for each species - were carried out from May 2009 to Jan. 2010. The field experiment was set according to a completely random design with five treatments and four replications. Just before or during flowering, a single treatment of trinexapac-ethyl at 100 or 200 g ha-1 and sulfometuron-methyl at 7.5 or 15 g ha-1 was applied to plants. A control treatment (plants not treated) for each species was part of each experiment. Trinexapac, at the doses of 100 and 200 g ha-1, showed selectivity to peanuts, cotton, potato, coffee, citrus, sunflower, cassava, rubber, soybean, and grape. At the lowest dose (100 g ha-1), it was selective for bean. Sulfometuron, at the dose of 7.5 g ha-1, was selective for peanuts and, at the two studied doses (7.5 and 15 g ha-1), it was selective for coffee, citrus, cassava, and rubber.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O trabalho teve como objetivo avaliar a qualidade pós-colheita de três cultivares de uvas de mesa sem semente submetidas ao processamento mínimo e armazenadas sob refrigeração e à temperatura ambiente. Para tanto, foram utilizadas uvas das cultivares BRS Clara, BRS Linda e BRS Morena, produzidas na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Uva e Vinho/Estação Experimental de Viticultura Tropical, em Jales-SP. Os cachos, depois de higienizados e imersos em água clorada a 200 mg de cloro.L-1 por 5 minutos, foram mantidos em câmara fria, a 12ºC, por 12 h. As bagas foram degranadas e lavadas em solução de álcool a 70%, por 5 segundos. Depois de escorrido o excesso da solução alcoólica, as bagas foram acondicionadas em bandejas de tereftalato de polietileno (PET) transparente com tampa e com capacidade para 500 mL. Cada unidade, contendo 200 g de bagas, foi armazenada a 12±1,8ºC e 24±0,8ºC, por 12 dias. Avaliaram-se, a cada três dias, a perda de massa fresca, a aparência, a coloração e os teores de sólidos solúveis (SS) e de acidez titulável (AT). A temperatura de 12ºC manteve a turgidez, a coloração, as qualidades organoléptica (relação SS/AT) e comercial das bagas das três cultivares testadas, por nove dias, enquanto no armazenamento à temperatura ambiente (24ºC), ocorre perda da qualidade comercial das bagas aos três dias para as cvs. BRS Clara e BRS Linda, e aos seis dias para a cv. BRS Morena.
Resumo:
O trabalho teve como objetivo avaliar os aspectos qualitativos de uvas de mesa apirênicas (sem sementes) quando submetidas ao processamento mínimo e armazenadas sob refrigeração. Para tanto, foram utilizadas uvas da cultivar BRS Morena e da Seleção Avançada nº 8, produzidas na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Uva e Vinho/Estação Experimental de Viticultura Tropical (da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) de Jales). Os cachos, depois de higienizados, imersos em água clorada a 300 mg de cloro.L-1 por 5 min., foram mantidos em câmara fria, a 12ºC, por 12 h. Pessoas treinadas e com proteção adequada procederam à degrana dos cachos e ao posterior enxágüe das bagas com água clorada (20 mg.L-1) a 12ºC. Depois de escorrido o excesso de água, as bagas foram acondicionadas em bandejas de tereftalato de polietileno (PET) transparente com tampa e com capacidade para 500 mL. Cada unidade, contendo 200 g de bagas, foi armazenada a 2,5 ± 1ºC e 88% UR por até 36 dias. Avaliaram-se a perda de massa fresca, a evolução da aparência, a coloração e os teores de sólidos solúveis totais (SST), e de acidez titulável (AT). Nas condições do experimento, os produtos minimamente processados da cv. BRS Morena e da Seleção 8 apresentaram baixa perda acumulada de massa fresca (0,16%). O produto da cv. Morena apresentou-se mais escuro (L = 25,04) e mais arroxeado (h° = 332,88) que o da Seleção 8 (L = 29,86 e h° = 345,11), propiciando-lhe melhor qualidade visual. O suco da 'BRS Morena' apresentou maiores teores de SST (22,17 °Brix) e menores para a AT (0,56 %), o que resultou em uma relação SST/AT maior e melhor (39,76) que o da Seleção 8 (18,81). A cv. BRS Morena também apresentou boa manutenção da aparência e, portanto, da qualidade comercial, por 33 dias a 2,5°C, superior ao obtido para a Seleção 8 (24 dias).
Resumo:
O objetivo deste trabalho foi desenvolver um oligonucleotídeo iniciador para reação em cadeia da polimerase (PCR) específico para as estirpes de Xylella fastidiosa que causam o mal de Pierce (PD) em videira (Vitis vinifera). Amplificações de DNA de 23 diferentes hospedeiros, usando o conjunto de oligonucleotídeos REP1-R (5'-IIIICGICGIATCCIGGC-3') e REP 2 (5'-ICGICTTATCI GGCCTAC-3') utilizando o programa: 94 ºC/2 min; 35 X (94 ºC/1 min, 45 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/5 min, produziu um fragmento de 630 pb que diferenciou as estirpes de videiras dos demais. Entretanto, padrões de bandeamento REP não são considerados confiáveis para detecção devido ao par de oligonucleotídeos REP 1 e REP 2 corresponderem a seqüências repetitivas encontradas por todo o genoma bacteriano. Desse modo, o produto amplificado de 630 pb foi eluído do gel de agarose, purificado e seqüenciado. A informação da seqüência nucleotídica foi usada para identificar e sintetizar um oligonucleotídeo específico para o isolado de X. fastidiosa causadora do mal de Pierce denominado Xf-1 (5'-CGGGGGTGTAGGAGGGGTTGT-3'), que foi utilizado juntamente com o oligonucleotídeo REP-2 nas condições 94 ºC/2 min; 35 X (94 ºC/1 min, 62 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/10 min. Os DNAs das estirpes de X. fastidiosa de outros hospedeiros [amêndoa (Prumus amygdalus), citros (Citrus spp.), café (Coffea arabica), olmo (Ulmus americana), amora (Morus rubra), carvalho (Quercus rubra), vinca (Catharantus roseus), ameixa (Prunus salicina) e ragweed (Ambrosia artemisiifolia)] e de bactérias Gram negativas e positivas foram submetidos a amplificação com o conjunto de oligonucleotídeos Xf-1/REP 2. Um fragmento, de aproximadamente 350 pb, foi amplificado apenas com o DNA de X. fastidiosa isolada de videira.
Resumo:
Com o objetivo de avaliar os efeitos de thidiazuron e de ácido giberélico nas características dos cachos de uvas 'Rubi', foi conduzido um experimento, utilizando-se de thidiazuron a 5 e 10 mg.L-1 e ácido giberélico a 20mg.L-1, combinados ou não. As aplicações dos produtos foram realizadas aos 14; 21 ou 28 dias após o pleno florescimento, por meio de imersão dos cachos. Todos os tratamentos com reguladores de crescimento aumentaram a massa dos cachos. A massa dos bagos e dos engaços foi identicamente influenciada pela aplicação dos produtos, porém menos evidente, quando as aplicações foram realizadas aos 28 dias após o pleno florescimento. As aplicações de thidiazuron a 5mg.L-1, aos 14 ou 21 dias após o florescimento, não diferiram das aplicações de ácido giberélico para as variáveis estudadas. Não houve diferenças significativas para as variáveis teor de sólidos solúveis totais, acidez titulável, porém os tratamentos com thidiazuron retardaram a maturação em até 7 dias.
Resumo:
Perdas significativas ocorrem durante o armazenamento e a comercialização de uvas de mesa devido, principalmente, à ocorrência do mofo cinzento (Botrytis cinerea Pers.:Fr.) e, para o controle de patógenos emprega-se, geralmente, o dióxido de enxofre (SO2). Diante da restrição crescente ao uso de produtos químicos em pós-colheita, tem ocorrido considerável interesse em métodos alternativos de controle. Este trabalho teve como principal objetivo avaliar os efeitos da quitosana, na proteção pós-colheita de uva 'Itália' contra B. cinerea. In vivo, avaliou-se o efeito direto e indireto da quitosana pelo tratamento dos cachos de uva, antes e após a inoculação com o patógeno. Utilizou-se quitosana nas concentrações de 0,00; 0,25; 0,50; 1,00; 1,50 e 2,00 % (v/v). Para inoculação, em 10 bagas de cada cacho de uva foram feitos ferimentos de ±2 mm de profundidade, procedendo-se em seguida, a aspersão da suspensão de conídios (±10(5) conídios.mL-1) de B. cinerea. Após os tratamentos, os cachos foram mantidos a 25±1 °C / 80-90 % UR e avaliados diariamente quanto à incidência e severidade da podridão. Avaliações in vitro do efeito do produto sobre o patógeno também foram realizadas analisando-se o crescimento micelial e a germinação dos conídios de B. cinerea. A solução de quitosana, nas concentrações de 1,5 e 2,0 % (v/v), quando empregada após a inoculação com B cinerea, reduziu significativamente o índice de doença no entanto, quando os cachos foram tratados antes da inoculação, não houve efeito significativo do tratamento sobre o desenvolvimento da doença. Nos ensaios in vitro, a solução de quitosana, nas maiores concentrações, suprimiu o crescimento micelial do patógeno e retardou a germinação dos conídios.
Resumo:
A viticultura é uma atividade relevante para os produtores rurais do Estado de São Paulo, sobretudo aqueles detentores de pequenas áreas. O presente trabalho teve como objetivo caracterizar os principais aspectos sociais e tecnológicos utilizados na produção de uvas para mesa na região de Jales (SP). Os dados foram levantados nos anos de 2009 e 2010, a partir da aplicação de questionários a 19 produtores de uva e do acompanhamento do ciclo de produção de 10 propriedades. Os produtores cultivam pelo menos três cultivares diferentes de uva, sendo as principais: 'Niagara Rosada', 'Itália' e 'Benitaka'. A área média das propriedades é de, aproximadamente, 21 ha, e a área média com parreiras de uva é de 2,4 ha. A maioria dos produtores não conta com assistência técnica regular, não segue recomendações de adubação e não emprega critérios técnicos para o manejo da irrigação. O controle de doenças é realizado de forma preventiva e intensa, chegando a superar 100 aplicações por ciclo, no caso das uvas finas para mesa. Os resultados devem subsidiar a realização de outras pesquisas, assim como programas de planejamento e transferência de tecnologia, proporcionando ao produtor um manejo mais adequado da cultura, bem como o desenvolvimento sustentável rural regional.
Resumo:
In Brazil, postharvest diseases caused by pathogenic microorganisms are a major problem that causes damage to around 80% of the total fruit production. In the lower middle Sao Francisco river valley numerous studies on identification and control of fungal diseases during postharvest of grapes are needed, in order to minimize losses in this step. In this context, bunches of seedless varieties 'Crimson', 'Sonaka'; 'Superior' and 'Thompson' were collected from July to November 2009, in order to identify and quantify the incidence of pathogenic fungi. The grapes were collected on five farms which specialize in the production of table grapes for export, all located in Juazeiro - BA and Petrolina - PE. During this period, 10 samples were taken. In the fruit farm five plants were used for sampling, and removal of two bunches of grapes per plant, totaling 10 bunches per variety. Subsequently, they were sent to the laboratory of Plant Pathology at UNEB/DTCS where they were placed separately in a moist chamber for 48 hours at an average temperature of 23 degrees C. After this period, isolations of berries and stems in Petri plates containing PDA - potato-dextrose-agar were carried out with 10 repetitions, which were placed on benches under laboratory conditions. From the 8th day on, the presence of Aspergillus niger, Alternaria alternata, Cladosporium herbarum, Lasiodiploidia theobromae was observed, which presented the highest incidence, as well as Rhizopus stolonifer, Penicillium expansum.