958 resultados para gonadorelin agonist
Resumo:
Objective: To compare the level of apoptosis and DNA fragmentation in the human granulosa cell (GC) layer exposed to an agonist or antagonist of GnRH in intracytoplasmic sperm injection (ICSI) cycles supplemented with recombinant LH (rLH).Study design: Patients without ovulatory dysfunction, aged <= 37 years and in their first ICSI cycle were prospectively randomised to receive either a long GnRH agonist protocol or a multi-dose antagonist protocol. In both groups, recombinant FSH supplemented with rLH was used for ovarian stimulation, and the GCs were collected during oocyte denudation. The GCs were then analysed for DNA fragmentation by TUNEL assay and for apoptosis using the annexin-V assay. The outcomes were given as the percentage of GCs with DNA fragmentation and apoptosis out of the total number of GCs analysed. Comparison of the agonist versus the antagonist group was performed using the Mann-Whitney test.Results: DNA fragmentation: 32 patients were included in either the GnRH agonist group (n = 16) or the antagonist group (n = 16). The percentage of GCs with positive DNA fragmentation did not differ significantly (P = 0.76) between the agonist group (15.5 +/- 9.4%) and the antagonist group (18.8 +/- 13.3%). Apoptosis: 28 patients were included in either the GnRH agonist group (n = 14) or the antagonist group (n = 14). The percentage of GCs positive for apoptosis did not differ significantly (P = 0.78) between the agonist group (34.6 +/- 14.7%) and the antagonist group (36.5 +/- 22%).Conclusions: The results suggest that therapy with either an agonist or antagonist of GnRH is associated with comparable levels of DNA fragmentation and apoptosis in granulosa cells in ICSI cycles supplemented with rLH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.Methods: The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.Results: All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. on the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phaseGnRH- a administration group. The majority of the results presented heterogeneity.Conclusions: These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.
Resumo:
Background: Some studies have suggested that the suppression of endogenous LH secretion does not seem to affect the majority of patients who are undergoing assisted reproduction and stimulation with recombinant FSH (r-FSH). Other studies have indicated that a group of normogonadotrophic women down-regulated and stimulated with pure FSH preparations may experience low LH concentrations that compromise the IVF parameters. The present study aimed to compare the efficacy of recombinant LH (r-LH) supplementation for controlled ovarian stimulation in r-FSH and GnRH-agonist (GnRH-a) protocol in ICSI cycles.Methods: A total of 244 patients without ovulatory dysfunction, aged < 40 years and at the first ICSI cycle were divided into two groups matched by age according to an ovarian stimulation scheme: Group I (n = 122): Down-regulation with GnRH-a + r-FSH and Group II (n = 122): Downregulation with GnRH-a + r-FSH and r-LH (beginning simultaneously).Result(s): The number of oocytes collected, the number of oocytes in metaphase II and fertilization rate were significantly lower in the Group I than in Group II (P = 0.036, P = 0.0014 and P = 0.017, respectively). In addition, the mean number of embryos produced per cycle and the mean number of frozen embryos per cycle were statistically lower (P = 0.0092 and P = 0.0008, respectively) in Group I than in Group II. Finally the cumulative implantation rate (fresh+thaw ed embryos) was significantly lower (P = 0.04) in Group I than in Group II. The other clinical and laboratory results analyzed did not show difference between groups.Conclusion: These data support r-LH supplementation in ovarian stimulation protocols with r-FSH and GnRH-a for assisted reproduction treatment.
Resumo:
Background: The selection of developmentally competent human gametes may increase the efficiency of assisted reproduction. Spermatozoa and oocytes are usually assessed according to morphological criteria. Oocyte morphology can be affected by the age, genetic characteristics, and factors related to controlled ovarian stimulation. However, there is a lack of evidence in the literature concerning the effect of gonadotropin-releasing hormone (GnRH) analogues, either agonists or antagonists, on oocyte morphology. The aim of this randomized study was to investigate whether the prevalence of oocyte dysmorphism is influenced by the type of pituitary suppression used in ovarian stimulation.Methods: A total of 64 patients in the first intracytoplasmic sperm injection (ICSI) cycle were prospectively randomized to receive treatment with either a GnRH agonist with a long-term protocol (n: 32) or a GnRH antagonist with a multi-dose protocol (n: 32). Before being subjected to ICSI, the oocytes at metaphase II from both groups were morphologically analyzed under an inverted light microscope at 400x magnification. The oocytes were classified as follows: normal or with cytoplasmic dysmorphism, extracytoplasmic dysmorphism, or both. The number of dysmorphic oocytes per total number of oocytes was analyzed.Results: Out of a total of 681 oocytes, 189 (27.8 %) were morphologically normal, 220 (32.3 %) showed cytoplasmic dysmorphism, 124 (18.2%) showed extracytoplasmic alterations, and 148 (21.7%) exhibited both types of dysmorphism. No significant difference in oocyte dysmorphism was observed between the agonist- and antagonist- treated groups (P > 0.05). Analysis for each dysmorphism revealed that the most common conditions were alterations in polar body shape (31.3%) and the presence of diffuse cytoplasmic granulations (22.8%), refractile bodies (18.5%) and central cytoplasmic granulations (13.6%). There was no significant difference among individual oocyte dysmorphisms in the agonist- and antagonist-treated groups (P > 0.05).Conclusions: Our randomized data indicate that in terms of the quality of oocyte morphology, there is no difference between the antagonist multi-dose protocol and the long-term agonist protocol. If a GnRH analogue used for pituitary suppression in IVF cycles influences the prevalence of oocyte dysmorphisms, there does not appear to be a difference between the use of an agonist as opposed to an antagonist.
Resumo:
Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. Besides increasing fluid depletion-induced sodium intake, the activation of GABA(A) receptors with muscimol into the LPBN also induces ingestion of 0.3 M NaCl in normonatremic, euhydrated rats. It has been suggested that inhibitory mechanisms activated by osmotic signals are blocked by GABAA receptor activation in the LPBN, thereby increasing hypertonic NaCl intake. Therefore, in the present study we investigated the effects of muscimol injected into the LPBN on water and 0.3 M NaCl intake in hyperosmotic cell-dehydrated rats (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In euhydrated rats, muscimol (0.5 nmol/0.2 mu l), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (24.6 +/- 7.9 vs. vehicle: 0.5 +/- 0.3 ml/180 min) and water (6.3 +/- 2.1 vs. vehicle: 0.5 +/- 0.3 ml/180 min). One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of muscimol into the LPBN also induced 0.3 M NaCl intake (22.1 +/- 5.2 vs. vehicle: 0.9 +/- 0.8 ml/210 min) and water intake (16.5 +/- 3.6 vs. vehicle: 7.8 +/- 1.8 ml/210 min). The GABAA antagonist bicuculline (0.4 nmol/0.2 mu l) into the LPBN reduced the effect of muscimol on 0.3 M NaCl intake (7.1 +/- 2.1 ml/210 min). Therefore, the activation of GABAA receptors in the LPBN induces ingestion of 0.3 M NaCl by hyperosmotic cell-dehydrated rats, suggesting that plasma levels of renin or osmolarity do not affect sodium intake after the blockade of LPBN inhibitory mechanisms with muscimol. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work evaluated low-cost protocols for timed artificial insemination (TAI) in beef cattle. In Experiment 1, cycling nonlactating Nelore cows (Bos indicus, n=98) were assigned to the following groups: GnRH-PGF (GP) and GnRH-PGF-GnRH (GPG), whereas cycling (n=328, Experiment 2) or anestrus (n = 225, Experiment 3) lactating (L) cows were divided into 3 groups: GP-L, GPG-L and GnRH-PCF-Estradiol benzoate (GPE-L). In Experiment 4, lactating cows (n=201) were separated into 3 groups: GP-L, GPE-L and G 1/2PE-L. Animals from Experiment 1, 3 and 4 were treated (Day 0), at random stages of the estrous cycle, with 8 mug of buserelin acetate (GnRH agonist) intramuscularly (im), whereas in Experiment 2 half of the cows received 8 and the other half 12 mug of GnRH (im). Seven days later (D 7) all animals were treated with 25 mg of dinoprost trometamine (PGF2 alpha, im) except those cows from the G 1/2PE-L group which received only 1/2 dose of PGF2 alpha (12.5 mg) via intravulvo-submucosa (ivsm). Alter PGF2 alpha injection the animals from the control groups (GP and GP-L) were observed twice daily to detect estrus and Al was performed 12 h afterwards. The cows from the other groups received a second GnRH injection (D 8 in GPG-L and d9 in GPG groups) or one injection of estradiol benzoate (EB, 1.0 mg, D 8 in GPE-L group). All cows from GPG and GPG-L or GPE-L groups were AI 20 to 24 or 30 to 34 h, respectively, after the last hormonal injection. Pregnancy was determined by ultrasonography or rectal palpation 30 to 50 days after AI. In the control groups (GP and GP-L) percentage of animals detected in heat (44.5 to 70.3%) and pregnancy rate (20 to 42%) varied according to the number of animals with corpus luteum (CL) at the beginning of treatment. The administration of a second dose of GnRH either 24 (Experiment 2) or 48 h (Experiment 1) after PGF2 alpha resulted in 47.7 and 44.9% pregnancy rates, respectively, after TAI in cycling animals. However, in anestrus cows the GPG treatment induced a much lower pregnancy rate (14.9%) after TAI. The replacement of the second dose of GnRH by EB (GPE-L) resulted in a pregnancy rate (43.3%) comparable to that obtained after GnRH treatment (GPG-L, 47.7%, Experiment 2). Furthermore, the use of 1/2 dose of PGF2 alpha (12.5 mg ivms, Experiment 4) resulted in pregnancy rate (43.5%) similar to that observed with the full dose (im). Both protocols GPG and GPE were effective in synchronizing ovulation in cycling Nelore cows and allowed approximately a 45% pregnancy rate after TAI. Additionally, the GPE treatment is a promising alternative to the use of GPG in timed Al of beef cattle, due to the low cost of EB when compared to GnRH agonists. (C) 2001 by Elsevier B.V.
Resumo:
Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.
Resumo:
A series of experiments with Holstein heifers was conducted to develop the capability of inducing accessory corpus luteum (CL) with a GnRH agonist (Buserelin, 8 mu g; GnRHa) or hCG; (3,000 IU) to increase plasma progesterone concentrations (Exp. 1, 2, and 3) and to test whether induction of accessory CL with hCG will increase conception rates in heifers (Exp. 4) and lactating cows (Exp. 5). In Exp. 1, heifers were treated on d 5 after estrus with GnRHa (n = 8) or saline (n = 7); heifers in Exp. 2 received hCG (n = 5) or saline (n = 4) on d 5. Experiment 3 allowed a contemporary evaluation of heifers treated on d 5 with GnRHa (n = 6), hCG (n = 6), saline (n = 6), or GnRHa at d 5 and hCG at the time of the induced ovulation (n = 5). The GnRHa and hCG were equally effective in inducing an accessory CL (93% induction rate), but the subsequent increase in progesterone concentrations was greater in hCG-treated heifers. A greater half life of hCG may provide longer LH-like stimulation of the first-wave follicle and subsequent developing accessory CL or a greater luteotropic effect on the original CL. Induction of an accessory CL with hCG on d 5 or 6 after insemination did not increase pregnancy rates in fertile heifers (Exp. 4: hCG = 64.8% vs control = 62.9%; n = 243) or lactating dairy cows during summer heat stress (Exp. 5: hCG = 24.2% vs control = 23.5%; n = 201).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B®) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V® 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin®, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean ± S.E.M.) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8 ± 1.8, 6.1 ± 1.3, 51.5), P48 (12.6 ± 1.9, 7.1 ± 1.0, 52.3), P60 (10.5 ± 1.6, 5.7 ± 1.3, 40.0) and D60 (10.3 ± 1.7, 5.0 ± 1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol. © 2002 Elsevier B.V. All rights reserved.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.