989 resultados para glucose urine level
Resumo:
1 Fibrosis leads to chronic impairment of cardiac and renal function and thus reversal of existing fibrosis may improve function and survival. This project has determined whether pirfenidone, a new antifibrotic compound, and spironolactone, an aldosterone antagonist, reverse both deposition of the major extracellular matrix proteins, collagen and fibronectin, and functional changes in the streptozotocin(STZ)-diabetic rat. 2 Streptozotocin (65 mg kg(-1) i.v.)-treated rats given pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone; approximately-200 mg kg(-1) day(-1) as 0.2-2g l(-1) drinking water) or spironolactone (50 mg kg(-1) day(-1) s.c.) for 4 weeks starting 4 weeks after STZ showed no attenuation of the increased blood glucose concentrations and increased food and water intakes which characterize diabetes in this model. 3 STZ-treatment increased perivascular and interstitial collagen deposition in the left ventricle and kidney, and surrounding the aorta. Cardiac, renal and plasma fibronectin concentrations increased in STZ-diabetic rats. Passive diastolic stiffness increased in isolated hearts from STZ-diabetic rats. Both pirfenidone and spironolactone treatment attenuated these increases without normalizing the decreased + dP/dt(max) of STZ-diabetic hearts. 4 Left ventricular papillary muscles from STZ-treated rats showed decreased maximal positive inotropic responses to noradrenaline, EMD 57033 (calcium sensitizer) and calcium chloride; this was not reversed by pirfenidone or spironolactone treatment. STZ-treatment transiently decreased GFR and urine flow rates in isolated perfused kidneys; pirfenidone but not spironolactone prevented the return to control values. 5 Thus, short-term pirfenidone and spironolactone treatment reversed cardiac and renal fibrosis and attenuated the increased diastolic stiffness without normalizing cardiac contractility or renal function in STZ-diabetic rats.
Resumo:
Co-crystallization of sucrose from a highly concentrated sucrose syrup (less than or equal to 7% moisture, w/w) at 131 degreesC with 0, 5, 10, 15, and 20% of fructose, glucose, or a mixture of fructose and glucose was investigated. The crystallization of sucrose was delayed in presence of these lower molecular weight sugars. The DSC melting endotherm of cocrystallized samples exhibited a decrease in crystalline sucrose in the sample as a function of increased level of glucose and fructose. The mechanical strength of co-crystallized granules was found to be related to the moisture content and the amount of glucose or fructose content in the sample. The samples containing 10, 15, and 20% glucose in co-crystallized product demonstrated crystallization of glucose in its monohydrate form during 1 mo of storage.
Resumo:
The authors undertook this study to assess levels of cadmium exposure in the general population. Samples of lung, liver, and kidney were obtained from 61 cadavers (43 males, 18 females; 2-89 yr of age, mean age = 38.5 yr) who died from accidental causes and who were subject to postmortem examinations at the John Tonge Centre for Forensic Sciences, Queensland Health Scientific Services, Brisbane, Australia, in 1997 and 1998. Samples of bladder urine were also obtained from 22 cadavers. Tissue and urine samples were analyzed for cadmium, zinc, and copper with inductively coupled plasm (ICP) mass spectrometry. The overall mean values for cadmium in the lung, liver, and kidney cortex samples were 0.13, 0.95, and 15.45 mug/gm wet tissue weight. The average renal cadmium level in subjects with high lung-cadmium levels (n = 13) was 6 mug/gm wet tissue weight higher than that of similarly aged subjects who had medium lung-cadmium levels (n = 30). In females, the average level of cadmium in the liver was 74% greater than in males, and the average liver cadmium in females with high lung-cadmium levels was 100% higher than in males in the same age range who had the same high lung-cadmium levels. Renal cadmium accumulation tended to be greater in females than in males who were in the same age range and who had similar lung-cadmium levels, a result that suggested that there was a higher absorption rate of cadmium in females. The mean value for a urinary cadmium excretion of 2.30 mug/gm creatinine was found in a subset of samples that had a mean age of 39 yr and a renal cortex cadmium concentration of 18.6 mug/gm wet tissue weight. Urinary cadmium excretion rates were correlated more strongly with lung and kidney cadmium content than with age or liver cadmium levels. The results suggest that urinary cadmium excretion may be increased in smokers and could provide some estimate of body cadmium burdens in future Australian epidemiological studies.
Resumo:
zFour rumen-fistulated, multiparous Holstein-Friesian cows in early lactation were offered mixed diets based on rhodes grass hay (Chloris gayana) cv. Callide containing 13, 14, 15 or 16% crude protein (CP) on a dry matter basis, in a 4 x 4 latin square design. The estimated undegradable protein concentration in these diets was similar with rumen degradable protein concentration varying. Cows fed a diet containing 13% CP had lower (P = 0.07) milk yields than cows in other treatments (20.4 vs 21.9, 22.0 and 22.2 L/d for 13, 14, 15 and 16% CP, respectively). A positive linear relationship was found (P = 0.06) between organic matter intake and dietary CP%. There were negative linear relationships between dietary CP% and digestibilities of dry matter (P = 0.09), organic matter (P = 0.06) and neutral detergent fibre (P = 0.02). Feeding a diet containing 13% CP resulted in significantly lower (P = 0.001) molar proportions (%) of rumen valerate in comparison with other treatments. The molar proportions of isovalerate differed (P = 0.001) between treatments (0.66, 0.78, 0.89 and 1.04%) for 13, 14, 15 and 16% CP, respectively). Dietary protein level had no effect on rates of passage, in situ digestion of rhodes grass hay or ratios of allantoin: creatinine in urine. These data showed that increasing the dietary CP concentration of lactating cows fed diets based on rhodes grass hay increased intakes and not significantly improved at dietary CP concentrations above 14% DM.
Resumo:
OBJECTIVE: To identify factors associated to poor glycemic control among diabetic patients seen at primary health care centers. METHODS: A cross-sectional study was carried out in a sample of 372 diabetic patients attending 32 primary health care centers in southern Brazil. Data on three hierarchical levels of health unit infrastructure, medical care and patient characteristics were collected. RESULTS: The frequency of poor glycemic control was 50.5%. Multivariate analysis (multilevel method) showed that patients with body mass indexes below 27 kg/m², patients on oral hypoglycemic agents or insulin, and patients diagnosed as diabetic over five years prior to the interview were more likely to present poor glycemic control when compared to their counterparts. CONCLUSIONS: Given the hierarchical data structuring, all associations found suggest that factors associated to hyperglycemia are related to patient-level characteristics.
Resumo:
An adsorptive stripping voltammetric procedure for the determination of the antidepressant venlafaxine in urine using a mercury film microelectrode wasdeveloped. The method is based on controlled adsorptive accumulation of the drug at the potential of 1.00V (vs. Ag/AgCl) in the presence of 1.25 x10 -2 molL- 1 borate buffer (pH 8.7). Urine samples were analyzed directly after performing a ten-fold dilution with the supporting electrolyte but without other pretreatment. The limit of detection obtained for a 30 s collection time was 0.693x 10- 6 mol L -1. Recovery experimentsgave good results at the 10 -6 mol L- 1 level (bias less 5% were obtained).
Resumo:
Ochratoxin A (OTA) is a mycotoxin produced by a variety of fungi, such as Penicillium verrucosum and Aspergillium spp., which has been found to have a wide number of potentially deadly toxic effects, and can enter the human organism through a variety of means. It then finds its way into the bloodstream and, after a lengthy process, is eventually excreted through the urine. It can thus be detected in its original form not only in blood samples but also in this biological medium. As such, and in an attempt to evaluate the exposure of the Portuguese population to this mycotoxin, morning urine samples were collected during the Winter of 2007, from each of five geographically distinct Portuguese locations — Bragança, Porto, Coimbra, Alentejo, and Algarve — and subjected to extraction by immunoaffinity columns and to OTA quantification through liquid chromatography coupled with fluorescence detection. Prevalent incidence was higher than 95% with Coimbra being the exception (incidence of 73.3%). In nearly all locations, the OTA content of most samples was found to be above the limit of quantification (LOQ) of 0.008 ng/ml. Indeed, excluding Coimbra, with an OTA content level of 0.014 ng/ml, all regions featured content values over 0.021 ng/ml.
Resumo:
Microbiology, 154
Resumo:
This work presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl) trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4 mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6 × 10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.
Resumo:
A cross-sectional study with internal comparison groups was conducted to describe sociodemographic characteristics, as well as verify the association between the type of antiretroviral treatment used and hyperglycemia and hyperlipidemia, with special attention to the use of HIV protease inhibitors. The data was obtained through an interview questionnaire, as well as blood and urine samples that were collected for the laboratory exams. A total of 418 patients were interviewed. 46 of these, however, met the exclusion criteria. The sample was therefore composed by 372 HIV positive patients, attended at the laboratory of the Correia Picanço State Hospital for the collection of blood, to estimate the HIV viral load and/or TCD4 cell counts from August to November 2000. The association between the variables was tested using the chi-square test and the p-value. A multiple logistic regression analysis was carried out to adjust for potential confounding factors. A greater frequency of patients with high glucose levels was observed among those making use of antiretroviral therapy without protease inhibitors, but the number of patients limited the comparisons. An association was verified between the total serum cholesterol level and the use of HIV protease inhibitors (p = 0.047) even after controlling for age. An association was also observed between the triglyceride levels and the use of HIV protease inhibitors, which remained after adjustment for age, sex and creatinine levels (p < 0.001). The levels of glucose and TSH, the presence of proteinuria and the practice of physical activity were not associated either with the levels of cholesterol or with the levels of tryglicerides thus they were not confounders of the associations described.
Resumo:
The use of MS-222 as an anesthetic for matrinxã juveniles was investigated. At dosage of 100 mg/L or lower fish did not achieve a complete anesthesia state. At 150 mg/L, MS-222 induced anesthesia within 36 seconds and recovered from a 10 minutes period of anesthesia within 5.2 min. Higher concentrations (200, 250 and 300 mg/L) anesthetized fish in lesser times, with the offset of mortality (16.7 and 33.3%) at the 200 and 300 mg/L MS-222 doses, respectively. The only significant differences observed in the hematological parameters, was for the glucose values in fish anesthetized with 250 and 300 mg/L. From the results, the recommended dose of MS-222 for handling matrinxã juveniles is 150 mg/L.
Systemic effects of epidural Methylprednisolone injection on glucose tolerance in diabetic patients.
Resumo:
ABSTRACT: BACKGROUND: Several studies have shown that in diabetic patients, the glycemic profile was disturbed after intra-articular injection of corticosteroids. Little is known about the impact of epidural injection in such patients. The goal of this study was double, at first comparing the glycaemic profile in diabetic patients after a unique injection of 80 mg of acetate methylprednisolone either intra-articular or epidural and secondly to compare the amount of systemic diffusion of the drug after both procedures. METHODS: Seventeen patients were included. Glycemic changes were compared in 9 diabetic patients following intra-articular (4 patients) and epidural injections (5 patients). Epidural injections were performed using the sacral route under fluoroscopic control in patients with lumbar spinal stenosis. Diabetes control had to stable for more than 10 days and the renal function to be preserved. Blood glucose was monitored using a validated continuous measuring device (GMS, Medtronic) the day before and for two days following the injection. Results were expressed in the form of daily glycemic profiles and as by mean, peak and minimal values +/ SD. The urinary excretion of methylprednisolone after the 2 routes of injection was analyzed in 8 patients (4 in each group). Urine samples were cropped one hour before the injections, then 4 times during the first day and 3 times a week for 2 weeks. The measurements included the free and conjugated fraction RESULTS: The glycaemic profile remains unchanged with no significant changes in the group of the 5 diabetic patients receiving epidural injections. On the other end, the average peak and mean values were enhanced up to 3 mmol/l above baseline two days after the infiltration in the groups of the 4 diabetic patients infiltrated intra-articular. The mean urinary excretion of the steroid was about ten times higher in the intra-articular versus epidural group: 7000 ng/ml versus 700 ng/ml. Looking at each individual there were marked differences especially after intra-articular injections. CONCLUSION: This is the first study to show that a single epidural steroid injection of 80 mg depot methylprednisolone had no effect on the glycemic control in diabetic patients. The absence of glycemic control changes correlated well with the very low urinary excretion of the drug after epidural injection. Trial registration NCT01420497.
Resumo:
Quand on parle de l'acide lactique (aussi connu sous le nom de lactate) une des premières choses qui vient à l'esprit, c'est son implication en cas d'intense activité musculaire. Sa production pendant une activité physique prolongée est associée avec la sensation de fatigue. Il n'est donc pas étonnant que cette molécule ait été longtemps considérée comme un résidu du métabolisme, possiblement toxique et donc à éliminer. En fait, il a été découvert que le lactate joue un rôle prépondérant dans le métabolisme grâce à son fort potentiel énergétique. Le cerveau, en particulier les neurones qui le composent, est un organe très gourmand en énergie. Récemment, il a été démontré que les astrocytes, cellules du cerveau faisant partie de la famille des cellules gliales, utilisent le glucose pour produire du lactate comme source d'énergie et le distribue aux neurones de manière adaptée à leur activité. Cette découverte a renouvelé l'intérêt scientifique pour le lactate. Aujourd'hui, plusieurs études ont démontré l'implication du lactate dans d'autres fonctions de la physiologie cérébrale. Dans le cadre de notre étude, nous nous sommes intéressés au rapport entre neurones et astrocytes avec une attention particulière pour le rôle du lactate. Nous avons découvert que le lactate possède la capacité de modifier la communication entre les neurones. Nous avons aussi décrypté le mécanisme grâce auquel le lactate agit, qui est basé sur un récepteur présent à la surface des neurones. Cette étude montre une fonction jusque-là insoupçonnée du lactate qui a un fort impact sur la compréhension de la relation entre neurones et astrocytes. - Relatively to its volume, the brain uses a large amount of glucose as energy source. Furthermore, a tight link exists between the level of synaptic activity and the consumption of energy equivalents. Astrocytes have been shown to play a central role in the regulation of this so-called neurometabolic coupling. They are thought to deliver the metabolic substrate lactate to neurons in register to glutamatergic activity. The astrocytic uptake of glutamate, released in the synaptic cleft, is the trigger signal that activates an intracellular cascade of events that leads to the production and release of lactate from astrocytes. The main goal of this thesis work was to obtain detailed information on the metabolic and functional interplay between neurons and astrocytes, in particular on the influence of lactate besides its metabolic effects. To gain access to both spatial and temporal aspects of these dynamic interactions, we used optical microscopy associated with specific fluorescent indicators, as well as electrophysiology. In the first part of this thesis, we show that lactate decreases spontaneous neuronal, activity in a concentration-dependent manner and independently of its metabolism. We further identified a receptor-mediated pathway underlying this modulatory action of lactate. This finding constituted a novel mechanism for the modulation of neuronal transmission by lactate. In the second part, we have undergone a characterization of a new pharmacological tool, a high affinity glutamate transporter inhibitor. The finality of this study was to investigate the detailed pharmacological properties of the compound to optimize its use as a suppressor of glutamate signal from neuron to astrocytes. In conclusion, both studies have implications not only for the understanding of the metabolic cooperation between neurons and astrocytes, but also in the context of the glial modulation of neuronal activity. - Par rapport à son volume, le cerveau utilise une quantité massive de glucose comme source d'énergie. De plus, la consommation d'équivalents énergétiques est étroitement liée au niveau d'activité synaptique. Il a été montré que dans ce couplage neurométabolique, un rôle central est joué par les astrocytes. Ces cellules fournissent le lactate, un substrat métabolique, aux neurones de manière adaptée à leur activité glutamatergique. Plus précisément, le glutamate libéré dans la fente synaptique par les neurones, est récupéré par les astrocytes et déclenche ainsi une cascade d'événements intracellulaires qui conduit à la production et libération de lactate. Les travaux de cette thèse ont visé à étudier la relation métabolique et fonctionnelle entre neurones et astrocytes, avec une attention particulière pour des rôles que pourrait avoir le lactate au-delà de sa fonction métabolique. Pour étudier les aspects spatio-temporels de ces interactions dynamiques, nous avons utilisé à la fois la microscopie optique associée à des indicateurs fluorescents spécifiques, ainsi que l'électrophysiologie. Dans la première partie de cette thèse, nous montrons que le lactate diminue l'activité neuronale spontanée de façon concentration-dépendante et indépendamment de son métabolisme. Nous avons identifié l'implication d'un récepteur neuronal au lactate qui sous-tend ce mécanisme de régulation. La découverte de cette signalisation via le lactate constitue un mode d'interaction supplémentaire et nouveau entre neurones et astrocytes. Dans la deuxième partie, nous avons caractérisé un outil pharmacologique, un inhibiteur des transporteurs du glutamate à haute affinité. Le but de cette étude était d'obtenir un agent pharmacologique capable d'interrompre spécifiquement le signal médié par le glutamate entre neurones et astrocytes pouvant permettre de mieux comprendre leur relation. En conclusion, ces études ont une implication non seulement pour la compréhension de la coopération entre neurones et astrocytes mais aussi dans le contexte de la modulation de l'activité neuronale par les cellules gliales.
Resumo:
Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.
Resumo:
The oxidative and nonoxidative glucose metabolism represent the two major mechanisms of the utilization of a glucose load. Eight normal subjects were administered oral loads of 50, 100 and 150 g glucose and gas exchange measurements were performed for eight hours by means of computerized continuous indirect calorimetry. The glycemic peaks were almost identical with all three doses with a rise to between 141 and 147 mg/dl at 60 min. The fall back to basal level was reached later with the high than with the low glucose doses. The glucose oxidation rate rose to values between 223 and 253 mg/min after the three glucose doses, but while falling immediately after the peak at 120 min following the 50 g load, the glucose oxidation rate remained at its maximum rate until 210 min for the 100 g glucose load and plateaued up to 270 min for the 150 g glucose dose. The oxidation rates then fell gradually to reach basal levels at 270, 330 and 420 min according to the increasing size of the load. Altogether 55 +/- 3 g glucose were oxidized during the 8 hours following the 50 g glucose load, 75 +/- 3 g after the 100 g load and 80 +/- 5 g after the 150 g load. The nonoxidative glucose disposal, which corresponds essentially to glucose storage, varied according to the size of the glucose load, with uptakes of 20 +/- 1, 60 +/- 1 and 110 +/- 1 g glucose 180 min after the 50, 100 and 150 g glucose loads respectively.(ABSTRACT TRUNCATED AT 250 WORDS)