927 resultados para glass-ionomer-resin composite hybrid material


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hybrid material based on WO3 and Vulcan XC-72R carbon has been used as the support of Pd nano-catalysts. The resultant Pd-WO3/C catalysts in a large range of WO3 content exhibit excellent catalytic activity and stability for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the uniform dispersion of Pd with less particle sizes on the WO3/C support and the hydrogen spillover effect which greatly accelerates the dehydrogenation of HCOOH on Pd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid material based on Pt nanoparticles (Pt NPs) and multi-walled carbon nanotubes (MWNTs) was fabricated with the assistance of PEI and formic acid. The cationic polyelectrolyte PEI not only favored the homogenous dispersion of carbon nanotubes (CNTs) in water, but also provided sites for the adsorption of anionic ions PtCl42- on the MWNTs' sidewalls. Deposition of Pt NPs on the MWNTs' sidewalls was realized by in situ chemical reduction of anionic ions PtCl42- with formic acid. The hybrid material was characterized with TEM, XRD and XPS. Its excellent electrocatalytic activity towards both oxygen reduction in acid media and dopamine redox was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative differential resistance (NDR) and memory effect were observed in diodes based on 1,4-dibenzyl C60 (DBC) and zinc phthalocyanine doped polystyrene hybrid material. Certain negative starting sweeping voltages led to a reproducible NDR, making the hybrid material a promising candidate in memory devices. It was found that the introduction of DBC enhanced the ON/OFF current ratio and significantly improved the memory stability. The ON/OFF current ratio was up to 2 orders of magnitude. The write-read-erase-reread cycles were more than 10(6), and the retention time reached 10 000 s without current degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid materials, containing in-situ synthesized lanthanide complexes with intense green light, have been prepared via sol-gel process. The luminescence properties and the decay times of as-synthesized samples were investigated. The excitation spectrum of the samples indicates the formation of complexes between terbium (III) and P-Sulfosalicylic acid. The hybrid materials that contain in-situ synthesized terbium complexes exhibit the characteristic emission bands of the rare earth ions. In addition, the effect of concentration of terbium on the luminescence properties as well as the thermal stability were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique sol-gel enzyme electrode for inert organic solvents is developed that is based on the partition equilibrium of the substrate between water-organic solvent media and the enzyme membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanometer-sized CeO2/polystyrene hybrid material was prepared using reversed micelles microemulsion method. XRD analysis revealed that the CeO2 nanoparticles in polystyrene were amorphous. XPS patterns indicated that the hybrid material was not a simply physical mixture, but a certain strength of chemical bond between CeO2 nanoparticles and polystyrene existed. FTIR patterns revealed that the absorption of Ce-O bond in hybrid material was blue-shifted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of sol-gel organic-inorganic hybrid material was developed and used for the production of biosensors. This material is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. It prevents the cracking of conventional sol-gel-derived glasses and eliminates the swelling of the hydrogel. The optimum composition of the hybrid material was first examined, and then glucose oxidase was immobilized in this matrix to demonstrate its application. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The biosensor exhibited a series of good properties: high sensitivity (600 nA mmol(-1)L(-1)), short response time (11 s) and remarkable long-term stability in storage (at least 5 months). In addition, the characteristics of the second-generation biosensor with the use of tetrathiafulvalene as a mediator mere discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water loss behaviour of a clinical glass-ionomer dental cement has been studied with and without the addition of alkali metal chlorides. Dehydrating conditions were provided by placing specimens in a desiccator over concentrated sulphuric acid. Cements were prepared using either pure water or an aqueous solution of metal chloride (LiCl, NaCl, KCl) at 1.0 mol/dm(3). In addition, NaCl at 0.5 mol/dm(3) was also used to fabricate cements. Disc-shaped specimens of size 6 mm diameter x 2 mm thickness were made, six performulation, and cured at 37 degrees C for 1 hour They were then exposed to desiccating conditions, and the mass measured at regular intervals. All formulations were found to lose water in a diffusion process that equilibrated after approximately 3 weeks. Diffusion coefficients ranged from 2.27 (0.13) x 10(9) with no additive to 1.85 (0.07) x 10(9) m(2)/s with 1.0 mol/dm(3) KCl. For the salts, diffusion coefficients decreased in the order LiCl > NaCl > KCl. There was no statistically significant difference between the diffusion coefficients for 1.0 and 0.5 mol/dm(3) NaCl. For all salts at 1.0 mol/dm(3) and also additive-free cements, equilibrium losses were, with statistical limits, the same, ranging from 6.23 to 6.34%. On the other hand, 0.5 mol/dm(3) NaCl lost significantly more water 7.05%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was determine whether bonding of glass-ionomer cements to non-carious dentine differed from that to carious dentine. Five commercial cements were used, namely Fuji IX GP, Fuji IX capsulated, Fuji IX Fast capsulated (all GC, Japan), Ketac-Molar and Ketac-Molar Aplicap (both 3M-ESPE, Germany). Following conditioning of the substrate with 10% poly (acrylic acid) for 10 s, sets of 10 samples of the cements were bonded to prepared teeth that had been removed for orthodontic reasons. The teeth used had either sound dentine or sclerotic dentine. Shear bond strengths were determined following 24 h storage. For the auto-mixed cements, shear bond strength to sound dentine was found not to differ statistically from shear bond strength to sclerotic dentine whereas for hand-mixed cements, shear bond to sound dentine was found to be higher than to carious dentine (to at least p < 0.05). This shows that the chemical effects arising from interactions of glass-ionomer cements with the mineral phase of the tooth are the most important in developing strong bonds, at least in the shorter term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cylindrical specimens (6 mm high x 4 mm diameter) of the endodontic grade glass-ionomer (Ketac Endo) were exposed to various media for 1 week, after which changes in their mass, pH of storage medium, and ion release were determined. In water, this cement was shown to release reasonable amounts of sodium, aluminium and silicon, together with smaller amounts of calcium and phosphorus, as well as taking up 2.41% by mass of water. A comparison with the restorative grade materials (Ketac Molar, ex 3M ESPE and Fuji IX, ex GC) showed both ion release and water uptake to be greater. All three cements shifted pH from 7 to around 6 with no significant differences between them. Other storage media were found to alter the pattern of ion release. Lactic acid caused an increase, whereas both saturated calcium hydroxide and 0.6% sodium hypochlorite, caused decreases. This suppression of ion-release may be significant clinically. Aluminium is the most potentially hazardous of the ions involved but amounts released were low compared with levels previously reported to show biological damage.