994 resultados para glacier
Resumo:
A series of more than 70 radiocarbon dates confirms that the Schnidejoch pass, linking the Bernese Highlands with the River Rhone valley, was in use at least from 4800–4500 BC on. The pass was of easy access when the glaciers from the nearby Wildhorn mountain range (peak on 3248 a.s.l) were in a retreating phase e.g. as is the situation today. During holocene phases of advancing glaciers the pass was blocked for humans accompanied by herding animals. The presentation reviews the publication of Grosjean et al. (Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations, JOURNAL OF QUATERNARY SCIENCE, 200, 22.3, 203–207) on a larger basis of radiocarbon dating and discusses the position of the pass within a system of prehistoric settlements, camp sites and passes.
Resumo:
We present successful 81 Kr-Kr radiometric dating of ancient polarice. Krypton was extracted from the air bubbles in four∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81 Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean abso-lute age offset of 6±2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85 Kr and 39 Ar analyses that show the samples to be free of modern air contamination and (ii)air content measurements that show the ice did not experience gas loss. We estimate the error in the 81 Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81 Kr dating of ice cores is a future possibility.
Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes
Resumo:
A third glacier inventory (GI3) is presented for the province of Salzburg where 173 glaciers are located in the seven mountain ranges: Ankogel (47°4'N, 13°14'E), Glockner, Granatspitz, Sonnblick (Goldberg), Hochkönig, Venediger and Zillertal (47°8'N, 12°7'E). The basis for the new GI3 are orthophotos of 2007 and 2009 and the digital elevation model (DEM) of the southern part of Salzburg. On the basis of former inventories, area- and volume changes have been calculated. The biggest relative loss of glacier area per mountain range was found in the Ankogel range and on Hochkönig as a result of the disrupted structure of their small and thin glaciers. In terms of absolute values, the largest changes took place in the Glockner- and Venediger range with an area loss of -10.1 km**2 and -9.7 km**2 during the period between GI1 (1969) and GI3 (2007/2009), respectively. Volume changes have been calculated for nearly half of the glacier area in Salzburg, where DEMs were available. The Glockner, Granatspitz and Sonnblick mountain ranges showed a volume loss of -0.481 km**3 which corresponds to a mean thickness change of -10.5 m. An extrapolation of these changes to all of the 173 glaciers in Salzburg results in a loss of about 1.04 km**3 between GI1 and GI3 and 0.44 km**3 between GI2 and GI3. Overall annual changes in the province of Salzburg between GI2 and GI3 were higher than between GI1 and GI2 and show likewise changes such as those of Tyrol.