977 resultados para genotype III and V
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.
Resumo:
The separation by solvent extraction of Am-241(III) from Eu-152(III), in 1 M NaNO3 weakly acidic (pH 4) aqueous solutions, into dilute (ca. 10(-2) M) solutions of triazinylbipyridine derivatives (diethylhemi-BTP or di(benzyloxyphenyl) hemi-BTP) and chlorinated cobalt dicarbollide (COSAN) in 1-octanol or nitrobenzene has been studied. The N-tridentate heterocyclic ligands, which are selective for Am(III) over Eu(III), secured efficient separation of the two metal ions, while COSAN, strongly hydrophobic and fully dissociated in polar diluents, enhanced the extraction of the metal ions by ion-pair formation. Molecular interactions between the two co-extractants, observed at higher concentrations, led to the precipitation of their 1: 1 molecular adduct. In spite of that, efficient separations of Am and Eu ions were attained, with high separation factors, SFAm/Eu of 40 and even 60, provided the concentration of hemi-BTP was significantly greater than that of COSAN. Excess COSAN concentrations caused an antagonistic effect, decreasing both the distribution ratio of the metal ions and their separation factor.
Resumo:
Using the 1: 2 condensate of benzildihydrazone and 2-acetylpyridine as a tetradentate N donor ligand L, LaL(NO3)(3) (1) and EuL(NO3)(3) (2), which are pale yellow in colour, are synthesized. While single crystals of 1 could not be obtained, 2 crystallises as a monodichloromethane solvate, 2 center dot CH2Cl2 in the space group Cc with a = 11.7099(5) angstrom, b = 16.4872(5) angstrom, c = 17.9224(6) angstrom and beta = 104.048(4)degrees. From the X-ray crystal structure, 2 is found to be a rare example of monohelical complex of Eu(III). Complex 1 is diamagnetic. The magnetic moment of 2 at room temperature is 3.32 BM. Comparing the FT-IR spectra of 1 and 2, it is concluded that 1 also is a mononuclear single helix. H-1 NMR reveals that both 1 and 2 are mixtures of two diastereomers. In the case of the La(III) complex (1), the diastereomeric excess is only 10% but in the Eu(III) complex 2 it is 80%. The occurrence of diastereomerism is explained by the chiralities of the helical motif and the type of pentakis chelates present in 1 and 2.
Resumo:
The reaction of the fulvalene titanium(III) hydride [{Ti(η5-C5H5)(μ-H)}2(μ-η5-η5-C10H8)] (1) with chlorine leads to [{Ti(η5-C5H5)(μ-Cl)}2(μ-η5-η5-C10H8)] (3) and [{Ti(η5-C5H5)Cl2}2(μ-η5-η5-C10H8)] (4). The reaction of 3 with azobenzene, in wet toluene, gives [{Ti(η5-C5H5)Cl}2(μ-O)(μ-η5-η5-C10H8)] (5) and 1,2-diphenyl hydrazine. The alkylation of 4 and the analogous zirconium complex [{Zr(η5-C5H55)Cl2}2(μ-η5-η5-C10H8)] (2) with LiCH2SiMe3 or LiCH3 permits isolation of the tetraalkyl derivatives [{M(η5-C5H5)(CH2SiMe3)2}2(μ-η5-η5-C10H8)] (M Ti (6); Zr (8)) and [{Ti(η5-C5H5)(CH3)2}2(μ-η5-η5C10H8)] (7). All the new fulvalene compounds were characterized by IR, and 1H and 13C NMR spectroscope, and mass spectra and 5 by X-ray diffraction. The structure of 5 is very similar to that of the comparable TiIV compound [{Ti(η5-C5H5)2Cl}2(μ-O)] except for the smaller TiOTi angle (159.4° against 173.81°) and a significant deviation from linearity.
Resumo:
Several alkylated cyclohexanones were investigated as potential diluents for the selective extraction of Am(III) and Eu(III) from nitric acid solutions by the CyMe4-BTBP ligand. No significant extraction of either of the metal ions was observed for these diluents themselves. In the extractions from 1 M HNO3, 3-methylcyclohexanone and 4-methylcyclohexanone gave comparable results to cyclohexanone whereas in the extractions from 4 M HNO3, 2-methylcyclohexanone, 3-methylcyclohexanone and 4-methylcyclohexanone all gave superior results. For the monomethylated diluents, DAm and SFAm/Eu decreased in the order of alkyl substitution 2 > 4 ~ 3. However, alkyl substitution of cyclohexanone significantly slows down the extraction kinetics compared to cyclohexanone, and the position of alkyl substitution was found to play an important role in the solvents properties. 3-Methylcyclohexanone was identified as the most promising of the diluents.
Resumo:
This article looks at an important but neglected aspect of medieval sovereign debt, namely ‘accounts payable’ owed by the Crown to merchants and employees. It focuses on the unusually well-documented relationship between Henry III, King of England between 1216 and 1272, and Flemish merchants from the towns of Douai and Ypres, who provided cloth on credit to the royal wardrobe. From the surviving royal documents, we reconstruct the credit advanced to the royal wardrobe by the merchants of Ypres and Douai for each year between 1247 and 1270, together with the king's repayment history. The interactions between the king and the merchants are then analysed. The insights from this analysis are applied to the historical data to explain the trading decisions made by the merchants during this period, as well as why the strategies of the Yprois sometimes differed from those of the Douaissiens.
Resumo:
The present work reports a convenient route for the immobilisation of a phenanthroline-bis triazine (C1-BTPhen) group on the surface of zirconia-coated maghemite (γ-Fe2O3) magnetic nanoparticles. The magnetic nanoparticles functionalized with C1-BTPhen were able to co-extract Am(III) and Eu(III) from nitric acid (HNO3). The extraction efficiency of these C1-BTPhen-functionalized magnetic nanoparticles for both Am(III) and Eu(III) was 20% at 4M HNO3. The interaction between C1-BTPhen and metal cations is reversible. These functionalized magnetic nanoparticles can be used for the co-extraction of traces of Am(III) and Eu(III).
Resumo:
It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.
Resumo:
It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.
Resumo:
It has been shown that modification of the phenanthroline backbone of CyMe4-BTPhen leads to subtle electronic modulation, permitting differential ligation of Am(III) and Cm(III) resulting in separation factors up to 7.
Resumo:
Zinc oxide is a widely used white inorganic pigment. Transition metal ions are used as chromophores and originate the ceramic pigments group. In this context, ZnO particles doped with Co, Fe, and V were synthesized by the polymeric precursors method, Pechini method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of decomposition temperatures due to different exothermal events, which were identified as H(2)O elimination, organic compounds degradation and phase formation. The samples were structurally characterized by X-Ray diffractometry revealing the formation of single phase, corresponding to the crystalline matrix of ZnO. The samples were optically characterized by diffuse reflectance measurements and colorimetric coordinates L*, a*, b* were calculated for the pigment powders. The pigment powders presented a variety of colors ranging from white (ZnO), green (Zn(0.97)Co(0.03)O), yellow (Zn(0.97)Fe(0.03)O), and beige (Zn(0.97)V(0.03)O).
Resumo:
Reaction of 2-acetylpyridine semicarbazone (H2APS), 3-acetylpyridine semicarbazone (H3APS) and 4-acetylpyridine semicarbazone (H4APS) with [VO(acac)(2)] (acac = acetylacetonate) gave [VO(H2APS)(acac)(2)] (1), (VO(H3APS)(acac)(2)] (2) and [VO(4APS)(acac) (H2O)] center dot 1/2H(2)O (3). Oxidation of complex 1 in acetonitrile gave [VO2(2APS)] (4). The crystal structures of complexes 1 and 4 have been determined. Complexes 1-3 were able to enhance glucose uptake and to inhibit glycerol release from adipocytes, which indicate their potential to act as insulin-mimics. (C) 2008 Elsevier Ltd. All rights reserved.