997 resultados para genetic profiles
Resumo:
There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.
Resumo:
An understanding of the multi-step nature of cancer as it is in the breast, as a series of pivotal genetic/epigenetic modifications is irrefutably a milestone in diagnostics, prognostics and eventually providing a cure. Here we have utilised a variant of analysis of variance (ANOVA) as a model for the identification and tracking of specific mRNA species whose transcription has been significantly altered at each grade in the progression of ductal carcinoma, making it possible to correlate histological progression with the genetic events underlying breast cancer. We show that in the progression of ductal carcinomas, from grade 1 to 3, there is a reduction in the actual number of mRNA species, which are significantly over or under expressed. We also show that this technique can be employed to generate differential gene expression patterns, whereby the combined expression profile of the tailored spectra of genes in the comparison of each ductal grade is sufficient to render them on clearly separate arms of an array-wise hierarchical cluster dendrogram.
Resumo:
Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. Statistical analysis confirmed this rather counterintuitive finding that leaves of ‘late regenerants’ exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.
Resumo:
Objective: SNPs identified from genome wide association studies associate with lipid risk markers of cardiovascular disease. This study investigated whether these SNPs altered the plasma lipid response to diet in the ‘RISCK’ study cohort. Methods: Participants (n = 490) from a dietary intervention to lower saturated fat by replacement with carbohydrate or monounsaturated fat, were genotyped for 39 lipid-associated SNPs. The association of each individual SNP, and of the SNPs combined (using genetic predisposition scores), with plasma lipid concentrations was assessed at baseline, and on change in response to 24 weeks on diets. Results: The associations between SNPs and lipid concentrations were directionally consistent with previous findings. The genetic predisposition scores were associated with higher baseline concentrations of plasma total(P = 0.02) and LDL (P = 0.002) cholesterol, triglycerides (P = 0.001) and apolipoprotein B (P = 0.004), and with lower baseline concentrations of HDL cholesterol (P < 0.001) and apolipoprotein A-I (P < 0.001). None of the SNPs showed significant association with the reduction of plasma lipids in response to the dietary interventions and there was no evidence of diet-gene interactions. Conclusion: Results from this exploratory study have shown that increased genetic predisposition was associated with an unfavourable plasma lipid profile at baseline, but did not influence the improvement in lipid profiles by the low-saturated-fat diets.
Resumo:
Reliable and sufficiently discriminative methods are needed for differentiating individual strains of Salmonella enterica serotype Enteritidis beyond the phenotypic level; however, a consensus has not been reached as to which molecular method is best suited for this purpose. In addition, data are lacking on the molecular fingerprinting of serotype Enteritidis from poultry environments in the United Kingdom. This study evaluated the combined use of classical methods (phage typing) with three well-established molecular methods (ribotyping, macrorestriction analysis of genomic DNA, and plasmid profiling) in the assessment of diversity within 104 isolates of serotype Enteritidis from eight unaffiliated poultry farms in England. The most sensitive technique for identifying polymorphism was PstI-SphII ribotyping, distinguishing a total of 22 patterns, 10 of which were found among phage type 4 isolates. Pulsed-field gel electrophoresis of XhaI-digested genomic DNA segregated the isolates into only six types with minor differences between them. In addition, 14 plasmid profiles were found among this population. When all of the typing methods were combined, 54 types of strains were differentiated, and most of the poultry farms presented a variety of strains, which suggests that serotype Enteritidis organisms representing different genomic groups are circulating in England. In conclusion, geographical and animal origins of Salmonella serotype Enteritidis isolates may have a considerable influence on selecting the best typing strategy for individual programs, and a single method cannot be relied on for discriminating between strains.
Resumo:
Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
In recent years, research into the impact of genetic abnormalities on cognitive development, including language, has become recognized for its potential to make valuable contributions to our understanding of the brain–behaviour relationships underlying language acquisition as well as to understanding the cognitive architecture of the human mind. The publication of Fodor’s ( 1983 ) book The Modularity of Mind has had a profound impact on the study of language and the cognitive architecture of the human mind. Its central claim is that many of the processes involved in comprehension are undertaken by special brain systems termed ‘modules’. This domain specificity of language or modularity has become a fundamental feature that differentiates competing theories and accounts of language acquisition (Fodor 1983 , 1985 ; Levy 1994 ; Karmiloff-Smith 1998 ). However, although the fact that the adult brain is modularized is hardly disputed, there are different views of how brain regions become specialized for specific functions. A question of some interest to theorists is whether the human brain is modularized from the outset (nativist view) or whether these distinct brain regions develop as a result of biological maturation and environmental input (neuroconstructivist view). One source of insight into these issues has been the study of developmental disorders, and in particular genetic syndromes, such as Williams syndrome (WS) and Down syndrome (DS). Because of their uneven profiles characterized by dissociations of different cognitive skills, these syndromes can help us address theoretically significant questions. Investigations into the linguistic and cognitive profiles of individuals with these genetic abnormalities have been used as evidence to advance theoretical views about innate modularity and the cognitive architecture of the human mind. The present chapter will be organized as follows. To begin, two different theoretical proposals in the modularity debate will be presented. Then studies of linguistic abilities in WS and in DS will be reviewed. Here, the emphasis will be mainly on WS due to the fact that theoretical debates have focused primarily on WS, there is a larger body of literature on WS, and DS subjects have typically been used for the purposes of comparison. Finally, the modularity debate will be revisited in light of the literature review of both WS and DS. Conclusions will be drawn regarding the contribution of these two genetic syndromes to the issue of cognitive modularity, and in particular innate modularity.
Resumo:
Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture?
Resumo:
Eudarluca caricis is a common hyperparasite of rusts. A total of 100 cultures were isolated from six Puccinia species or forms growing on 10 species of British grasses at two sites approximately 3 km apart. 82 isolates collected in 2005 were partially sequenced at the ITS locus, and amplified fragment length polymorphism profiles generated for 86 isolates from 2005 and 12 from 2007. Partial ITS sequences of most isolates grouped closely, in a clade with previously reported graminaceous Puccinia isolates and a number of Melampsora isolates. A second clade was very distinct and contained mostly isolates from P. poarum on Poa trivialis. All isolates had distinct AFLP haplotypes. The P. poarum isolates were very distinct from isolates collected from other rusts at the same site. Isolates from P. brachypodii f. sp. arrehenatheri growing on Arrhenatherum elatius in 2005 and 2007 at the same location were distinct (P < 0.001). Isolates from each rust or grass in one year and site were more similar than expected from overall variation between isolates (P<0.001). Isolates from P. coronata on different grasses clustered together (with isolates from P. brachypodii f. sp. poae-nemoralis), suggesting partial host rust specialisation in E. caricis.
Resumo:
We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
HIV infection is associated with disturbances in lipid metabolism due to a host's response mechanism and the current antiretroviral therapy. The pathological appearance and progression of atherosclerosis is dependent on the presence of injurious agents in the vascular endothelium and variations in different subsets of candidate genes. Therefore, the Hha I polymorphism in the apolipoprotein E gene was evaluated in addition to triglycerides, total cholesterol, very low-density lipoprotein (VLDL), LDL, high-density lipoprotein (HDL), and apolipoprotein (apo) Al, B and E levels in 86 Brazilian HIV-infected patients and 29 healthy controls. The allele frequency for apoE in the HIV-infected group and controls was in agreement with data on the Brazilian population. Dyslipidemia was observed in the HIV group and verified by increased levels of triglycerides, VLDL and apoE, and decreased levels of HDL and apoAl. The greatest abnormalities in these biochemical variables were shown in the HIV-infected individuals whose immune function was more compromised. The effect of the genetic variation at the APOE gene on biochemical variables was more pronounced in the HIV-infected individuals who carried the apoE2/3 genotype. The highly active antiretroviral therapy (HAART)-receiving group presented increased levels of total cholesterol and apoE. Dyslipidemia was a predictable consequence of HIV infection and the protease inhibitors intensified the increase in apoE values.
Resumo:
The aim of this study is to describe the degree of yeast-colonization in diabetic and hemodialysed-users of dental prostheses. Individuals (306) were examined using an oral rinse technique in order to evaluate the incidence of yeast-carriage, and genotype of C. albicans. Yeasts were isolated from 68.4% (91/133) individual's dental prostheses users. Dental prostheses were found to be a significant factor for the yeast colonization (P < 0.05). Overall, the intensity of carriage was higher in diabetic patients as compared with health and hemodialysed individuals (P < 0.05). The isolation rates were: C. albicans (51.7%), C. parapsilosis (20.9%), C. tropicalis (14.3%), C. glabrata (6.6%), C. krusei (3.3%), C. rugosa (1.1%), and Pichia (Pichia ohmeri, 2.2%). Ready-To-Go RAPD Analysis Beads were used and primer OPJ 6 distinguished the C. albicans isolates found in prostheses users. All the isolates were grouped into 11 RAPD profiles in four main clusters and, the average S (AB) for the entire collection of 47 C. albicans isolates were 0.779 +/- 0.178. Over 85% of isolates had a similarity level higher than or equal to 0.8 reinforcing the idea that the use of dental prostheses, independently of the host's clinical condition, probably provides the necessary conditions for these strains to gain a growth-specific advantage over others.