998 resultados para genetic alterations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTRIBUTION OF ECTODOMAIN MUTATIONS IN EPIDERMAL GROWTH FACTOR RECEPTOR TO SIGNALING IN GLIOBLASTOMA MULTIFORME Publication No._________ Marta Rojas, M.S. Supervisory Professor: Oliver Bögler, Ph.D. The Cancer Genome Atlas (TCGA) has conducted a comprehensive analysis of a large tumor cohort and has cataloged genetic alterations involving primary sequence variations and copy number aberrations of genes involved in key signaling pathways in glioblastoma (GBM). This dataset revealed missense ectodomain point mutations in epidermal growth factor receptor (EGFR), but the biological and clinical significance of these mutations is not well defined in the context of gliomas. In our study, we focused on understanding and defining the molecular mechanisms underlying the functions of EGFR ectodomain mutants. Using proteomic approaches to broadly analyze cell signaling, including antibody array and mass spectrometry-based methods, we found a differential spectrum of tyrosine phosphorylation across the EGFR ectodomain mutations that enabled us to stratify them into three main groups that correlate with either wild type EGFR (EGFR) or the long-studied mutant, EGFRvIII. Interestingly, one mutant shared characteristics of both groups suggesting a continuum of behaviors along which different mutants fall. Surprisingly, no substantial differences were seen in activation of classical downstream signaling pathways such as Akt and S6 pathways between these classes of mutants. Importantly, we demonstrated that ectodomain mutations lead to differential tumor growth capabilities in both in vitro (anchorage independent colony formation) and in vivo conditions (xenografts). Our data from the biological characterization allowed us to categorize the mutants into three main groups: the first group typified by EGFRvIII are mutations with a more aggressive phenotype including R108K and A289T; a second group characterized by a less aggressive phenotype exemplified by EGFR and the T263P mutation; and a third group which shared characteristics from both groups and is exemplified by the mutation A289D. In addition, we treated cells overexpressing the mutants with various agents employed in the clinic including temozolomide, cisplatin and tarceva. We found that cells overexpressing the mutants in general displayed resistance to the treatments. Our findings yield insights that help with the molecular characterization of these mutants. In addition, our results from the drug studies might be valuable in explaining differential responses to specific treatments in GBM patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pedigree analysis of certain families with a high incidence of tumors suggests a genetic predisposition to cancer. Li and Fraumeni described a familial cancer syndrome that is characterized by multiple primary tumors, early age of onset, and marked variation in tumor type. Williams and Strong (1) demonstrated that at least 7% of childhood soft tissue sarcoma patients had family histories that is readily explained by a highly penetrant autosomal dominant gene. To characterize the mechanism for genetic predisposition to many tumor types in these families, we have studied genetic alterations in fibroblasts, a target tissue from patients with the Li-Fraumeni Syndrome (LFS).^ We have observed spontaneous changes in initially normal dermal fibroblasts from LFS patients as they are cultured in vitro. The cells acquire an altered morphology, chromosomal anomalies, and anchorage-independent growth. This aberrant behavior of fibroblasts from LFS patients had never been observed in fibroblasts from normal donors. In addition to these phenotypic alterations, patient fibroblasts spontaneously immortalize by 50 population doublings (pd) in culture; unlike controls that remain normal and senesce by 30-35 (2). At 50 pd, immortal fibroblasts from two patients were found to be susceptible to tumorigenic transformation by an activated T24 H-ras oncogene (3). Approximately 80% of the oncogene expressing transfectants were capable of forming tumors in nude mice within 2-3 weeks. p53 has been previously associated with immortalization of cells in culture and cooperation with ras in transfection assays. Therefore, patients' fibroblast and lymphocyte derived DNA was tested for point mutations in p53. It was shown that LFS patients inherited certain point mutations in one of the two p53 alleles (4). Further studies on the above LFS immortal fibroblasts have demonstrated loss of the remaining p53 allele concomitant with escape from senescence. While the loss of the second allele correlates with immortalization it is not sufficient to transformation by an activated H-ras or N-ras oncogene. These immortal fibroblasts are resistant to tumorigenic transformation by v-abl, v-src, c-neu or v-mos oncogene; implying that additional steps are required in the tumorigenic progression of LFS patients' fibroblasts.^ References. (1) Williams et al., J. Natl. Cancer Inst. 79:1213, 1987. (2) Bischoff et al., Cancer Res. 50:7979, 1990. (3) Bischoff et al., Oncogene 6:183, 1991. (4) Malkin et al., Science 250:1233, 1990. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plectin, a cytolinker of the plakin family, anchors the intermediate filament (IF) network formed by keratins 5 and 14 (K5/K14) to hemidesmosomes, junctional adhesion complexes in basal keratinocytes. Genetic alterations of these proteins cause epidermolysis bullosa simplex (EBS) characterized by disturbed cytoarchitecture and cell fragility. The mechanisms through which mutations located after the documented plectin IF-binding site, composed of the plakin-repeat domain (PRD) B5 and the linker, as well as mutations in K5 or K14, lead to EBS remain unclear. We investigated the interaction of plectin C terminus, encompassing four domains, the PRD B5, the linker, the PRD C, and the C extremity, with K5/K14 using different approaches, including a rapid and sensitive fluorescent protein-binding assay, based on enhanced green fluorescent protein-tagged proteins (FluoBACE). Our results demonstrate that all four plectin C-terminal domains contribute to its association with K5/K14 and act synergistically to ensure efficient IF binding. The plectin C terminus predominantly interacted with the K5/K14 coil 1 domain and bound more extensively to K5/K14 filaments compared with monomeric keratins or IF assembly intermediates. These findings indicate a multimodular association of plectin with K5/K14 filaments and give insights into the molecular basis of EBS associated with pathogenic mutations in plectin, K5, or K14 genes.Journal of Investigative Dermatology advance online publication, 10 July 2014; doi:10.1038/jid.2014.255.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Criteria for the diagnosis of serrated colorectal lesions (hyperplastic polyp, sessile serrated adenoma without or with dysplasia--which we called mixed polyp--and traditional serrated adenoma) for which consensus has been reached should be validated for applicability in daily practice in terms of inter-observer reproducibility and their association with clinical features and (epi)genetic events. A study set was created from a consecutive series of colorectal polyps (n = 1,926) by selecting all sessile serrated adenomas, traditional serrated adenomas and mixed polyps. We added consecutive series of hyperplastic polyps, classical adenomas and normal mucosa samples for a total of 200 specimens. With this series, we conducted an inter-observer study, encompassing ten pathologists with gastrointestinal pathology experience from five European countries, in three rounds in which all cases were microscopically evaluated. An assessment of single morphological criteria was included, and these were correlated with clinical parameters and the mutation status of KRAS, BRAF and PIK3CA and the methylation status of MLH1. Gender, age and localisation were significantly associated with certain types of lesions. Kappa statistics revealed moderate to good inter-observer agreement for polyp classification (κ = 0.56 to 0.63), but for single criteria, this varied considerably (κ = 0.06 to 0.82). BRAF mutations were frequently found in hyperplastic polyps (86 %, 62/72) and sessile serrated adenomas (80 %, 41/51). KRAS mutations occurred more frequently in traditional serrated adenomas (78 %, 7/9) and less so in classical adenomas (20 %, 10/51). Single morphological criteria for sessile serrated adenomas showed significant correlation with BRAF mutation (all p ≤ 0.001), and those for classical adenomas or traditional serrated adenoma correlated significantly with KRAS mutation (all p < 0.001). Therefore, single well-defined morphological criteria are predictive for genetic alterations in colorectal polyps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-associated gastric carcinomas (GC) represent a distinct and well-recognized subtype of gastric cancer with a prevalence of around 10% of all GC. In contrast, EBV has not been reported to play a major role in esophageal adenocarcinomas (EAC) and adenocarcinomas of the gastro-esophageal junction (GEJ). We report our experiences on EBV in collections of gastro-esophageal adenocarcinomas from two surgical centers and discuss the current state of research in this field. Tumor samples from 465 primary resected gastro-esophageal adenocarcinomas (118 EAC, 73 GEJ, and 274 GC) were investigated. Presence of EBV was determined by EBV-encoded small RNAs (EBER) in situ hybridization. Results were correlated with pathologic parameters (UICC pTNM category, Her2 status, tumor grading) and survival. EBER positivity was observed in 14 cases. None of the EAC were positive for EBER. In contrast, we observed EBER positivity in 2/73 adenocarcinomas of the GEJ (2.7%) and 12/274 GC (4.4%). These were of intestinal type (seven cases) or unclassifiable (six cases), while only one case was of diffuse type according to the Lauren classification. No association between EBV and pT, pN, or tumor grading was found, neither was there a correlation with clinical outcome. None of the EBER positive cases were Her2 positive. In conclusion, EBV does not seem to play a role in the carcinogenesis of EAC. Moreover, adenocarcinomas of the GEJ show lower rates of EBV positivity compared to GC. Our data only partially correlate with previous reports from the literature. This highlights the need for further research on this distinct entity. Recent reports, however, have identified specific epigenetic and genetic alterations in EBV-associated GC, which might lead to a distinct treatment approach for this specific subtype of GC in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myeloproliferative neoplasms (MPNs) are characterized by the clonal expansion of one or more myeloid cell lineage. In most cases, proliferation of the malignant clone is ascribed to defined genetic alterations. MPNs are also associated with aberrant expression and activity of multiple cytokines; however, the mechanisms by which these cytokines contribute to disease pathogenesis are poorly understood. Here, we reveal a non-redundant role for steady-state IL-33 in supporting dysregulated myelopoiesis in a murine model of MPN. Genetic ablation of the IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and abrogate MPN-like disease in animals lacking the inositol phosphatase SHIP. Stromal cell-derived IL-33 stimulated the secretion of cytokines and growth factors by myeloid and non-hematopoietic cells of the BM, resulting in myeloproliferation in SHIP-deficient animals. Additionally, in the transgenic JAK2V617F model, the onset of MPN was delayed in animals lacking IL-33 in radio-resistant cells. In human BM, we detected increased numbers of IL-33-expressing cells, specifically in biopsies from MPN patients. Exogenous IL-33 promoted cytokine production and colony formation by primary CD34+ MPN stem/progenitor cells from patients. Moreover, IL-33 improved the survival of JAK2V617F-positive cell lines. Together, these data indicate a central role for IL-33 signaling in the pathogenesis of MPNs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple osteochondromas (also called hereditary multiple exostoses) is an autosomal dominant disorder characterized by multiple cartilaginous tumors, which are caused by mutations in the genes for exostosin-1 (EXT1) and exostosin-2 (EXT2). The goal of this study was to elucidate the genetic alterations in a family with three affected members. Isolation of RNA from the patients' blood followed by reverse transcription and PCR amplification of selected fragments showed that the three patients lack a specific region of 90 bp from their EXT1 mRNA. This region corresponds to the sequence of exon 8 from the EXT1 gene. No splice site mutation was found around exon 8. However, long-range PCR amplification of the region from intron 7 to intron 8 indicated that the three patients contain a deletion of 4318 bp, which includes exon 8 and part of the flanking introns. There is evidence that the deletion was caused by non-homologous end joining because the breakpoints are not located within a repetitive element, but contain multiple copies of the deletion hotspot sequence TGRRKM. Exon 8 encodes part of the active site of the EXT1 enzyme, including the DXD signature of all UDP-sugar glycosyltransferases. It is conceivable that the mutant protein exerts a dominant negative effect on the activity of the EXT glycosyltransferase since it might interact with normal copies of the enzyme to form an inactive hetero-oligomeric complex. We suggest that sequencing of RNA might be superior to exome sequencing to detect short deletions of a single exon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colorectal cancer is a leading cause of cancer mortality and early detection can significantly improve the clinical outcome. Most colorectal cancers arise from benign neoplastic lesions recognized as adenomas. Only a small percentage of all adenomas will become malignant. Thus, there is a need to identify specific markers of malignant potential. Studies at the molecular level have demonstrated an accumulation of genetic alterations, some hereditary but for the most occurring in somatic cells. The most common are the activation of ras, an oncogene involved in signal transduction, and the inactivation of p53, a tumor suppressor gene implicated in cell cycle regulation. In this study, 38 carcinomas, 95 adenomas and 20 benign polyps were analyzed by immunohistochemistry for the abnormal expression of p53 and ras proteins. An index of cellular proliferation was also measured by labeling with PCNA. A general overexpression of p53 was immunodetected in 66% of the carcinomas, while 26% of adenomas displayed scattered individual positive cells or a focal high concentration of positive cells. This later was more associated with severe dysplasia. Ras protein was detected in 37% of carcinomas and 32% of adenomas mostly throughout the tissue. p53 immunodetection was more frequent in adenomas originating in colons with synchronous carcinomas, particularly in patients with familial adenomatous polyposis and it may be a useful marker in these cases. Difference in the frequency of p53 and ras alterationbs was related to the location of the neoplasm. Immunodetection of p53 protein was correlated to the presence of a mutation in p53 gene at exon 7 and 5 in 4/6 carcinomas studied and 2 villous adenomas. Thus, we characterized in adenomas the abnormal expression of two proteins encoded by the most commonly altered genes in colorectal cancer. p53 alteration appears to be more specifically associated with transition to malignancy than ras. By using immunohistochemistry, a technique that keeps the architecture of the tissue intact, it was possible to correlate these alterations to histopathological characteristics that were associated with higher risks for transformation: villous content, dysplasia and size of adenoma. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studies presented in this thesis focus on two aspects of the involvement of cyclin D1 in epithelial proliferation. Since cyclin D1 has been identified as a target for genetic alterations and deregulation in a variety of human cancers, we studied cyclin D1 expression in two experimental models of epithelial carcinogenesis. These studies provided evidence that cyclin D1 was a potential target of the activating mutation of the Ha-ras gene characteristic of the experimental protocol. In addition, evidence from two independent in vitro models suggested that cyclin D1 was indeed part of the primary cellular response to activated ras, and at least partly responsible for the increase in proliferation observed in ras-transformed cells.^ Cyclin D1 has also been described as a key regulator of the passage through the G1 phase of the cell cycle. Cyclin D1 is induced in response to mitogens in a variety of cell lines, and cells engineered to overexpress cyclin D1 show accelerated G1 transit. In order to study the involvement of cyclin D1 in epithelial cell growth and differentiation, we generated transgenic mice that constitutively overexpress cyclin D1 in stratified epithelia. These mice developed thymic hyperplasia and skin hyperproliferation, providing in vivo evidence of the potential of cyclin D1 to regulate growth of epithelial cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

p53 mutations are the most commonly observed genetic alterations in human cancers to date. A majority of these point mutations cluster in four evolutionarily conserved domains spanning amino acids 100-300. This region of p53 has been called its central conserved, or conformational domain. This domain of p53 is also targeted by the SV40 T antigen. Mutation, as well as interaction with SV40 T antigen results in inactivation of p53. We hypothesized that mutations and SV40 T antigen disrupt p53 function by interfering with the molecular interactions of the central conserved domain. Using a chimeric protein consisting of the central conserved domain of wild-type p53 (amino acids 115-295) and a protein A affinity tail, we isolated several cellular proteins that interact specifically with this domain of p53. These proteins range in size from 30K to 90K M$\rm\sb{r}.$ We also employed the p53 fusion protein to demonstrate that the central conserved domain of p53 possesses sequence-specific DNA-binding activity. Interestingly, the cellular proteins binding to the central conserved domain of p53 enhance the sequence-specific DNA-binding activity of full length p53. Partial purification of the individual proteins binding to the conformational domain of p53 by utilizing a sodium chloride step-gradient enabled further characterization of two proteins: (1) a 42K M$\rm\sb{r}$ protein that eluted at 0.5M NaCl, and bound DNA nonspecifically, and (2) a 35K M$\rm\sb{r}$ protein eluting into the 1.0M NaCl fraction, capable of enhancing the sequence-specific DNA-binding activity of p53. In order to determine the physiologic relevance of the molecular interactions of the conformational domain of p53, we examined the biochemical processes underlying the TNF-$\alpha$ mediated growth suppression of the NSCLC cell line H460. While growth suppression was accompanied by enhanced sequence-specific p53-DNA binding activity in TNF-$\alpha$ treated H460 nuclei, there was no increase in p53 protein levels. Furthermore, p35 was upregulated in TNF-$\alpha$ treated H460 cells, suggesting that the enhanced p53-DNA binding seen in these cells may be mediated by p35. Our studies define two novel interactions involving the central conserved domain of p53 that appear to be functionally relevant: (1) sequence-specific DNA-binding, and (2) interaction with other cellular proteins. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retinoblastoma protein (Rb) plays a critical role in cell proliferation, differentiation, and development. To decipher the mechanism of Rb function at the molecular level, we have systematically characterized a number of Rb-interacting proteins, among which is the clone C5 described here, which encodes a protein of 1,978 amino acids with an estimated molecular mass of 230 kDa. The corresponding gene was assigned to chromosome 14q31, the same region where genetic alterations have been associated with several abnormalities of thyroid hormone response. The protein uses two distinct regions to bind Rb and thyroid hormone receptor (TR), respectively, and thus was named Trip230. Trip230 binds to Rb independently of thyroid hormone while it forms a complex with TR in a thyroid hormone-dependent manner. Ectopic expression of the protein Trip230 in cells, but not a mutant form that does not bind to TR, enhances specifically TR-dependent transcriptional activity. Coexpression of wild-type Rb, but not mutant Rb that fails to bind to Trip230, inhibits such activity. These results not only identify a coactivator molecule that modulates TR activity, but also uncover a role for Rb in a pathway that responds to thyroid hormone.