981 resultados para gas storage
Resumo:
El presente trabajo pretendía investigar y analizar el funcionamiento del mercado de hidrocarburos y gas natural, en busca de determinar la Influencia de la exploración y el almacenamiento de petróleo y gas natural en la relación de las organizaciones con las comunidades. Teniendo en cuenta el concepto de comunidad a partir del marketing relacional donde la comunidad se refiere a los consumidores y el entorno en el cual están inmersos. En este contexto se definieron los principales actores que participan en la relación comercial, el tipo de relación presente entre ellos y todos los factores que intervienen en desarrollo de esta relación que cada vez es más inestable y de corto plazo. Al finalizar esta investigación se reunió información acerca de las relaciones comerciales en el mercado de hidrocarburos, que servirán de fundamento para investigaciones futuras que permitirán plantear alternativas para sobrellevar la incertidumbre de este mercado y de esa manera lograr desarrollar una relación más confiable y duradera entre las organizaciones y las comunidades que intervienen en el proceso comercial. Debido a que aunque existe gran diversidad estrategias que pueden ser implementadas para mantener una relación estable, estas en la mayor parte de los casos no son utilizadas.
Resumo:
The accurate prediction of storms is vital to the oil and gas sector for the management of their operations. An overview of research exploring the prediction of storms by ensemble prediction systems is presented and its application to the oil and gas sector is discussed. The analysis method used requires larger amounts of data storage and computer processing time than other more conventional analysis methods. To overcome these difficulties eScience techniques have been utilised. These techniques potentially have applications to the oil and gas sector to help incorporate environmental data into their information systems
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Chilled breasts of chicken were inoculated with Salmonella infantis or Pseudomonas aeruginosa and then given one of the following treatments: (i) exposure to gaseous ozone (>2000 ppm for up to 30 min); (ii) storage under 70% CO2:30% N-2; and (iii) exposure to gaseous ozone (>2000 ppm for 15 min) followed by storage under 70% CO2:30% N-2; all storage at 7degreesC. Gaseous ozone reduced the counts of samnonellae by 97(Y,, and pseudomonads by 95%, but indigenous coliforms were unaffected. Under the modified atmosphere, the cell count of S. infantis was reduced by 72% following initial exposure and then stabilised, coliforms grew, but Ps. aeruginosa behaved like S. infantis-initial reduction (58%) followed by stability. Exposure to gaseous ozone followed by gas packaging allowed survival of S. infantis, Ps. aeruginosa and coliforms over 9 days at 7degreesC, but there was no evidence of any sensory deterioration. It is proposed that the latter treatment could, in a modified form perhaps, be used to reduce the contamination of chicken carcasses with salmonellae and improve their shelf-life. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Cities globally are in the midst of taking action to reduce greenhouse gas (GHG) emissions. After the vital step of emissions quantification, strategies must be developed to detail how emissions reductions targets will be achieved. The Pathways to Urban Reductions in Greenhouse Gas Emissions (PURGE) model allows the estimation of emissions from four pertinent urban sectors: electricity generation, buildings, private transportation, and waste. Additionally, the carbon storage from urban and regional forests is modeled. An emissions scenario is examined for a case study of the greater Toronto, Ontario, Canada, area using data on current technology stocks and government projections for stock change. The scenario presented suggests that even with some aggressive targets for technological adoption (especially in the transportation sector), it will be difficult to achieve the less ambitious 2050 emissions reduction goals of the Intergovernmental Panel on Climate Change. This is largely attributable to the long life of the building stock and limitations of current retrofit practices. Additionally, demand reduction (through transportation mode shifting and building occupant behavior) will be an important component of future emissions cuts.
Resumo:
Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.
Resumo:
In this article we present analytical and numerical results for a pressure profile along the axis of a tube with a general and arbitrary time- and position-dependent gas source. The model is able to determine the pressure values along the tube, once the pumping speed at each extremity and the gas sources are specified. The time evolution of the pressure along a tube is presented for situations commonly found in high-vacuum applications, such as particle accelerators, colliders, storage rings, and synchrotron light sources. (C) 2004 American Vacuum Society.
Resumo:
This paper analyzes the thermal storage characteristics of aluminum plates in furnaces during their heating for lamination under two sources of heat: an electrical resistance bank and a combustion process carried out with natural gas. The set of equations to model the furnace under operation with electrical energy, for air as the fluid, is presented. This supports the theoretical analysis for the system under operation with natural gas combustion products. A numerical procedure, using the software ANSYS, is applied to determine the convection heat transfer coefficients for heating by the air flow. Temperatures measured in a plate inside a real furnace are used as parameters to determine these coefficients. Then convection and radiation heat transfer coefficients are determined for the natural gas combustion products. Results are compared, indicating a possible gain of 5.5 h in relation to a 19.5 h period of conventional electrical heating per plate.
Resumo:
Cachaça is a distiled beverage obtained from the fermentation of sugar cane syrup that, depending on the production procedures, may be susceptible to contamination by polycyclic aromatic hydrocarbons (PAHs). These compounds present carcinogenic and/or mutagenic properties and offer a risk to human health. Sixteen PAHs were determined in cachaças that had been stored in glass bottles and in polyethylene tank by gas chromatography coupled with mass spectrometry. The quantification of the PAHs utilised an internal standard. The limits of detection and quantification varied from 0.05 to 0.10 μg L−1 and 0.20 to 0.30 μg L−1, respectively. A total PAH concentration of 51.57 μg L−1 was found in the beverages that were stored in the tank, while the concentration in the cachaça stored in glass jugs was 6.07 μg L−1. These results indicate that the polyethylene tank is a source for PAHs in cachaça.
Resumo:
Cassava leaves have been widely used as a protein source for ruminants in the tropics. However, these leaves contain high level of hydro-cyanic acid (HCN) and condensed tannins (CT). There are evidences that making hay can eliminate more than 90% of HCN and that long-term storage can reduce CT levels. A complete randomized design with four replicates was conducted to determine the effect of different storage times (0-control, 60, 90 and 120 days) on chemical composition, in vitro rumen fermentation kinetics, digestibility and energy value of cassava leaves hay. Treatments were compared by analyzing variables using the GLM procedure (SAS 9.1, SAS Institute, Inc., Cary, NC). Crude protein (CP) and ether extract (EE) of the cassava hay were not affected (P > 0.05) by storage time (17.7% and 3.0%, respectively). Neutral detergent fiber, acid detergent fiber, total carbohydrate and non-fiber carbohydrate were not affected either (P>0.05) by storage time (47.5, 32.6, 72.3 and 25.8% respectively). However, other parameters were influenced. CT was lower (P<0.05) in hay after 120 days of storage compared with control (1.75% versus 3.75%, respectively). Lignin and insoluble nitrogen in neutral detergent, analyzed without sodium sulfite, were higher (P<0.01) after 120 days of storage, compared with the control (11.22 versus 13.57 and 1.65 versus 3.81% respectively). This suggests that the CT has bound to the fiber or CP and became inactive. Consequently, the in vitro digestibility of organic matter (50.36%), total digestible nutrients (44.79%) and energy (1.61 Mcal/KgMS), obtained from gas production data at 72 h of incubation, has increased (P<0.05) with storage times (56.83%, 51.53% and 1.86 Mcal/KgMS, respectively). The chemical composition and fermentative characteristics of cassava hay suffered variations during the storage period. The best values were obtained after 90 days of storage. This is probably due to the reduction in condensed tannins.
Resumo:
The aroma responsible for the flavor of fruits is highly susceptible to low temperatures in storage. The present study investigated the volatile composition of the Nanicao and Prata banana cultivars by testing pulp and whole fruit under cold storage conditions. The volatile fractions were characterized using headspace solid phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The cold storage induced changes in the volatile profile relative to the profile of the control group. The result of principal component analysis revealed that cold storage more strongly affects the Nanicao than the Prata cultivar. Esters such as 2-pentanol acetate, 3-methyl-1-butanol acetate, 2-methylpropyl butanoate, 3-methylbutyl butanoate, 2-methylpropyl 3-methylbutanoate and butyl butanoate were drastically reduced in the cold group of the Nanicao cultivar. Our results suggest that the metabolism responsible for the production of volatile compounds is related to the ability to tolerate low temperatures. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Nowadays alternative energies are an extremely important topic and the possibility of using hydrogen as an energy carrier must be explored. Many problems infer the technological application of this abundant and powerful resource, one of them the possibility of storage. In the framework of suitable materials for hydrogen storage, magnesium has been the center of this study because it is cheap and the amount of stored hydrogen that it achieves (7.6 wt%) is extremely appealing. Nanostructure helps to overcome the slow hydrogen diffusion and the functionalization of surfaces with transition metals or oxides favors the hydrogen molecule dissociation/recombination. The aim of this research is the investigation of the metal-hydride transformation in magnesium nanoparticles synthesized by inert-gas condensation, exploiting the fact that they are a simple model system. The so produced nanostructured powder has been analyzed in response to nanoparticles surface functionalization by transition metal clusters, specifically palladium, nickel and titanium, chosen on the basis of their completely different Mg-related phase diagrams. The role of the intermetallic phases formed upon heating and hydrogenation treatments will be presented to provide a comprehensive picture of hydrogen sorption in this class of nanostructured storage materials.