920 resultados para funzioni wavelet applicazioni scientifiche
Resumo:
A new technique, wavelet network, is introduced to predict chaotic time series. By using this technique, firstly, we make accurate short-term predictions of the time series from chaotic attractors. Secondly, we make accurate predictions of the values and bifurcation structures of the time series from dynamical systems whose parameter values are changing with time. Finally we predict chaotic attractors by making long-term predictions based on remarkably few data points, where the correlation dimensions of predicted attractors are calculated and are found to be almost identical to those of actual attractors.
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
In a recent paper Leong-Huang:2010 {Journal of Applied Statistics 37, 215–233} proposed a wavelet-correlation-based approach to test for cointegration between two time series. However, correlation and cointegration are two different concepts even when wavelet analysis is used. It is known that statistics based on nonstationary integrated variables have non-standard asymptotic distributions. However, wavelet analysis offsets the integrating order of nonstationary series so that traditional asymptotics on stationary variables suffices to ascertain the statistical properties of wavelet-based statistics. Based on this, this note shows that wavelet correlations cannot be used as a test of cointegration.