965 resultados para fungus garden
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
In the northern grain and cotton region of Australia, poor crop growth after long periods of fallow, called 'long-fallow' disorder, is caused by a decline of natural arbuscular-mycorrhizal fungi (AMF). When cotton was grown in large pots containing 22 kg of Vertisol from a field recently harvested from cotton in Central Queensland, plants in pasteurised soil were extremely stunted compared with plants in unpasteurised soil. We tested the hypothesis that this extreme stunting was caused by the absence of AMF and examined whether such stunted plants could recover from subsequent treatment with AMF spores and/or P fertiliser. At 42 days after sowing, the healthy cotton growing in unpasteurised soil had 48% of its root-length colonised with AMF, whereas the stunted cotton had none. After inoculation with AMF spores (6 spores/g soil of Glomus mosseae) and/or application of P fertiliser (50 mg P/kg soil) at 45 days after sowing, the stunted plants commenced to improve about 25 days after treatment, and continued until their total dry matter and seed cotton production equalled that of plants growing in unpasteurised soil with natural AMF. In contrast, non-mycorrhizal cotton grown without P fertiliser remained stunted throughout and produced no bolls and only 1% of the biomass of mycorrhizal cotton. Even with the addition of P fertiliser, non-mycorrhizal cotton produced only 64% of the biomass and 58% of the seed cotton (lint + seed) of mycorrhizal cotton plants. These results show that cotton is highly dependent on AMF for P nutrition and growth in Vertisol (even with high rates of P fertiliser), but can recover from complete lack of AMF and consequent stunting during at least the first 45 days of growth when treated with AMF spores and/or P fertiliser. This corroborates field observations in the northern region that cotton may recover from long-fallow disorder caused by low initial levels of AMF propagules in the soil as the AMF colonisation of its roots increases during the growing season.
Resumo:
Analysis of ribosomes and the post ribosomal supernatant fraction of actively growing cells ofThermomyces lanuginosus showed the presence of free 5 S RNA in the supernatant fraction. This 5 S RNA was identical to the ribosomal 5 S RNA in its electrophoretic mobility on 10% Polyacrylamide gel and in its base composition. 5 S RNA from both the sources gave evidence for the presence of diphosphate at the 5’ end. Most of the 5 S RNA that appeared in the cytoplasm was that transported from the nucleus during the isolation. This could be prevented by the use of a hexylene glycol-HEPES buffer.
Resumo:
Mikania micrantha Kunth (Asteraceae), commonly known as ‘mile-a-minute’, is a neotropical plant species now found in 17 Pacific island countries and territories, invading small cropping areas and plantations, thereby reducing productivity and food security. In 2006, a biocontrol project on M. micrantha commenced in Fiji and Papua New Guinea (PNG). The distribution of M. micrantha as well as baseline data such as plant growth rates and socio-economic impacts were determined before the importation of any biocontrol agents. Mikania micrantha was recorded in all 15 lowland provinces in PNG and on all major islands in Fiji. Plants grow about 3.2cm/day in PNG and about 1.9cm/day in Fiji. A socio-economic survey, involving over 370 respondents in over 220 villages from 15 provinces in PNG, found that 78% of respondents considered M. micrantha a serious weed and about 44% had M. micrantha, which they needed to weed at least fortnightly, in over a third of their land. Over 80% of respondents used slashing and/or handpulling as the preferred method of weed control. About 40% of respondents considered that M. micrantha reduced crop yield by more than 30%. In Fiji, 52 respondents from four islands participated in the survey. Over 60% of respondents in Fiji considered M. micrantha a serious weed and 23% had about 30% of their farm lands infested with the weed. Only 15% of respondents needed to weed at least fortnightly, with 56% using slashing and/or hand-pulling as the preferred means of control. Over 65% of respondents estimated that they lost at least 30% of potential crop yield to M. micrantha. Nearly 90% of respondents used M. micrantha as a medicinal plant to treat cuts and wounds. The life history of the rust Puccinia spegazzinii de Toni (Pucciniales: Pucciniaceae), originating from Ecuador, and imported into PNG and Fiji in 2008, was studied. P. spegazzinii is a microcyclic and autoecious rust and has a life cycle of 18-22 days. An efficient culturing and field release method was developed. Since 2008, the rust has been released at over 450 sites in 15 provinces in PNG, establishing at nearly 70 sites in four provinces. From some sites, the rust has spread over 7 km in 12 months. In Fiji, the rust has been released at over 80 sites, on four of the main islands, namely Viti Levu, Vanua Levu, Taveuni and Ovalau, and has established at 20 sites on Viti Levu and Vanua Levu. Plant growth studies and field monitoring in PNG showed that P. spegazzinii can significantly reduce the growth and density of M. micrantha and offers great potential for the control of this weed.
Resumo:
Summary: An uncommon thermophilic fungus, Melanocarpus albomyces, was isolated from soil and compost by incubating samples in a glucose/sorbose/asparagine liquid medium, followed by enrichment culture in medium containing sugarcane bagasse as carbon source. The culture filtrate protein of the fungus grown in the presence of bagasse or xylose hydrolysed xylan and some other polysaccharides but cellulose was not hydrolysed. High extracellular xylanase (EC 3.2.1.8) activity was produced by cultures grown on xylose or hemicellulosic materials. The enzyme was induced in glucose-grown washed mycelia in response to addition of xylose or xylan but not by alkyl or aryl β-D-xylosides. Cultures produced higher enzyme yields in shaken flasks than in a fermenter. Gel-filtration chromatography of culture filtrate protein showed the presence of two isoenzymes of xylanase, whose relative proportions varied with the carbon source used for growth. The extent of hydrolysis of heteroxylans or the hemicellulosic fraction of bagasse by culture filtrate protein preparations was greater when the cultures had been grown on bagasse rather than xylose as the inducing substrate. The activity of xylanase preparations was increased when an exogenous β-glucosidase was added.
Resumo:
The rust fungus Puccinia spegazzinii was introduced into Papua New Guinea (PNG) in 2008 as a classical biological control agent of the invasive weed Mikania micrantha (Asteraceae), following its earlier release in India, mainland China and Taiwan. Prior to implementing field releases in PNG, assessments were conducted to determine the most suitable rust pathotype for the country, potential for damage to non-target species, most efficient culturing method and potential impact to M. micrantha. The pathotype from eastern Ecuador was selected from the seven pathotypes tested, since all the plant populations evaluated from PNG were highly susceptible to it. None of the 11 plant species (representing eight families) tested to confirm host specificity showed symptoms of infection, supporting previous host range determination. A method of mass-producing inoculum of the rust fungus, using a simple technology which can be readily replicated in other countries, was developed. Comparative growth trials over one rust generation showed that M. micrantha plants infected with the rust generally had both lower growth rates and lower final dry weights, and produced fewer nodes than uninfected plants. There were significant correlations between the number of pustules and (a) the growth rate, (b) number of new nodes and (c) final total dry weight of single-stemmed plants placed in open sunlight and between the number of pustules and number of new nodes of multi-stemmed plants placed under cocoa trees. The trials suggest that field densities of M. micrantha could be reduced if the rust populations are sufficiently high. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved.
Resumo:
White-rot fungi are wood degrading organisms that are able to decompose all wood polymers; lignin, cellulose and hemicellulose. Especially the selective white-rot fungi that decompose preferentially wood lignin are promising for biopulping applications. In biopulping the pretreatment of wood chips with white-rot fungi enhances the subsequent pulping step and substantially reduces the refining energy consumption in mechanical pulping. Because it is not possible to carry out biopulping in industrial scale as a closed process it has been necessary to search for new selective strains of white-rot fungi which naturally occur in Finland and cause selective white-rot of Finnish wood raw-material. In a screening of 300 fungal strains a rare polypore, Physisporinus rivulosus strain T241i isolated from a forest burn research site, was found to be a selective lignin degrader and promising for the use in biopulping. Since selective lignin degradation is apparently essential for biopulping, knowledge on lignin-modifying enzymes and the regulation of their production by a biopulping fungus is needed. White-rot fungal enzymes that participate in lignin degradation are laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP) and hydrogen peroxide forming enzymes. In this study, P. rivulosus was observed to produce MnP, laccase and oxalic acid during growth on wood chips. In liquid cultures manganese and veratryl alcohol increased the production of acidic MnP isoforms detected also in wood chip cultures. Laccase production by P. rivulosus was low unless the cultures were supplemented with sawdust and charred wood, the components of natural growth environment of the fungus. In white-rot fungi the lignin-modifying enzymes are typically present as multiple isoforms. In this study, two MnP encoding genes, mnpA and mnpB, were cloned and characterized from P. rivulosus T241i. Analysis of the N-terminal amino acid sequences of two purified MnPs and putative amino acid sequence of the two cloned mnp genes suggested that P. rivulosus possesses at least four mnp genes. The genes mnpA and mnpB markedly differ from each other by the gene length, sequence and intron-exon structure. In addition, their expression is differentially affected by the addition of manganese and veratryl alcohol. P. rivulosus produced laccase as at least two isoforms. The results of this study revealed that the production of MnP and laccase was differentially regulated in P. rivulosus, which ensures the efficient lignin degradation under a variety of environmental conditions.
Resumo:
Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.
Resumo:
Digital Image
Resumo:
From Australia, 16 species of Hoplandrothrips are here recorded, of which 11 are newly described. An illustrated key is provided to 15 species, but Phloeothrips leai Karny cannot at present be recognised from its description. The generic relationships between Hoplandrothrips, Hoplothrips and some other Phlaeothripinae that live on freshly dead branches are briefly discussed.
Resumo:
Ten species of Holothrips, including seven new species, are recognized from Australia, with one further new species from New Caledonia. A new genus, Holoengythrips, is described from Australia, with nine new species that look similar to Holothrips species in having elongate maxillary stylets that are close together medially for the full length of the head. In contrast to species of Holothrips, the species of Holoengythrips are strongly sexually dimorphic, with antennal segment VIII separated from VII and the maxillary stylets more slender, and the males have a pore plate on the eighth sternite. Holoengythrips is therefore considered to be more closely related to Hoplandrothrips.