962 resultados para functional response


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prosody is an important feature of language, comprising intonation, loudness, and tempo. Emotional prosodic processing forms an integral part of our social interactions. The main aim of this study was to use bold contrast fMRI to clarify the normal functional neuroanatomy of emotional prosody, in passive and active contexts. Subjects performed six separate scanning studies, within which two different conditions were contrasted: (1) "pure" emotional prosody versus rest; (2) congruent emotional prosody versus 'neutral' sentences; (3) congruent emotional prosody versus rest; (4) incongruent emotional prosody versus rest; (5) congruent versus incongruent emotional prosody; and (6) an active experiment in which subjects were instructed to either attend to the emotion conveyed by semantic content or that conveyed by tone of voice. Data resulting from these contrasts were analysed using SPM99. Passive listening to emotional prosody consistently activated the lateral temporal lobe (superior and/or middle temporal gyri). This temporal lobe response was relatively right-lateralised with or without semantic information. Both the separate and direct comparisons of congruent and incongruent emotional prosody revealed that subjects used fewer brain regions to process incongruent emotional prosody than congruent. The neural response to attention to semantics, was left lateralised, and recruited an extensive network not activated by attention to emotional prosody. Attention to emotional prosody modulated the response to speech, and induced right-lateralised activity, including the middle temporal gyrus. In confirming the results of lesion and neuropsychological studies, the current study emphasises the importance of the right hemisphere in the processing of emotional prosody, specifically the lateral temporal lobes. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

LRRK2 is one of the most important genetic contributors to Parkinson’s disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consis- tently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data high- light the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap-crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae, and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap-crossing trials. Models that included gap-crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap-crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims Periodontal disease (PD) and airway allergic inflammation (AL) present opposing inflammatory immunological features and clinically present an inverse correlation. However, the putative mechanisms underlying such opposite association are unknown. Material and Methods Balb/C mice were submitted to the co-induction of experimental PD (induced by Actinobacillus actinomycetemcomitans oral inoculation) and AL [induced by sensitization with ovalbumin (OVA) and the subsequent OVA challenges], and evaluated regarding PD and AL severity, immune response [cytokine production at periodontal tissues, and T-helper transcription factors in submandibular lymph nodes (LNs)] and infection parameters. Results PD/AL co-induction decreased PD alveolar bone loss and periodontal inflammation while experimental AL parameters were unaltered. An active functional interference was verified, because independent OVA sensitization and challenge not modulate PD outcome. PD+AL group presented decreased tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta, -gamma, IL-17A, receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand and matrix metalloproteinase (MMP)-13 levels in periodontal tissues, while IL-4 and IL-10 levels were unaltered by AL co-induction. AL co-induction also resulted in upregulated T-bet and related orphan receptor gamma and downregulated GATA3 levels expression in submandibular LNs when compared with PD group. Conclusion Our results demonstrate that the interaction between experimental periodontitis and allergy involves functional immunological interferences, which restrains experimental periodontitis development by means of a skewed immune response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Components of the DNA mismatch repair (MMR) pathway are major players in processes known to generate genetic diversity, such as mutagenesis and DNA recombination. Trypanosoma cruzi, the protozoan parasite that causes Chagas disease has a highly heterogeneous population, composed of a pool of strains with distinct characteristics. Studies with a number of molecular markers identified up to six groups in the T. cruzi population, which showed distinct levels of genetic variability. To investigate the molecular basis for such differences, we analyzed the T. cruzi MSH2 gene, which encodes a key component of MMR, and showed the existence of distinct isoforms of this protein. Here we compared cell survival rates after exposure to genotoxic agents and levels of oxidative stress-induced DNA in different parasite strains. Analyses of msh2 mutants in both T. cruzi and T. brucei were also used to investigate the role of Tcmsh2 in the response to various DNA damaging agents. The results suggest that the distinct MSH2 isoforms have differences in their activity. More importantly, they also indicate that, in addition to its role in MMR, TcMSH2 acts in the parasite response to oxidative stress through a novel mitochondrial function that may be conserved in T. brucei. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the effects of losartan, an AT 1-receptor blocker, and ramipril, a converting enzyme inhibitor, on the pressor response induced by angiotensin II (ANG II) and carbachol (a cholinergic receptor agonist). Male Holtzman rats (250-300 g) with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The injection of losartan (50 nmol/l μl) into the LV blocked the pressor response induced by ANG II (12 ng/l μl) and carbachol (2 nmol/l μl). After injection of ANG II and carbachol into the LV, mean arterial pressure (MAP) increased to 31 ± 1 and 28 ± 2 mmHg, respectively. Previous injection of losartan abolished the increase in MAP induced by ANG II and carbachol into the LV (2 ± 1 and 5 ± 2 mmHg, respectively). The injection of ramipril (12 ng/l μl) prior to carbachol blocked the pressor effect of carbachol to 7 ± 3 mmHg. These results suggest an interaction between central cholinergic pathways and the angiotensinergic system in the regulation of arterial blood pressure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Periodontal disease (PD) is characterized as an inflammatory process that compromises the support and protection of the periodontium. Patients with Down's syndrome (DS) are prone to develop PD. Neutrophils (NE) are the first line of defense against infection and their absence sets the stage for disease. Aim: To compare the activity and function of NE in the peripheral blood from DS patients with and without PD, assisted at the Center for Dental Assistance to Patients with Special Needs affiliated with the School of Dentistry of Araçatuba, Brazil. Methods: Purified NE were collected from peripheral blood of 22 DS patients. NE were used to detect the 5-lypoxigenase (5-LO) expression by RT-PCR. Plasma from peripheral blood was collected to measure tumor necrosis factor-a (TNF-α) and interleukin-8 (IL-8) by ELISA and nitrite (NO 3) using a Griess assay. Results: Data analysis demonstrated that DS patients with PD present high levels of TNF-a and IL-8 when compared with DS patients without PD. However, there was no statistically significant difference in the levels of NO 3 production between the groups. The levels of the inflammatory mediator 5-LO expression increased in DS patients with PD. Conclusions: According with these results, it was concluded that TNF-α and IL-8 are produced by DS patients with PD. Furthermore, DS patients with PD presented high levels of 5-LO expression, suggesting the presence of leukotriene B 4 (LTB 4) in PD, thus demonstrating that the changes in NE function due to the elevation of inflammatory mediators contribute to PD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El tomate (Solanum lycopersicum L.) es considerado uno de los cultivos hortícolas de mayor importancia económica en el territorio Español. Sin embargo, su producción está seriamente afectada por condiciones ambientales adversas como, salinidad, sequía y temperaturas extremas. Para resolver los problemas que se presentan en condiciones de estrés, se han empleado una serie de técnicas culturales que disminuyen sus efectos negativos, siendo de gran interés el desarrollo de variedades tolerantes. En este sentido la obtención y análisis de plantas transgénicas, ha supuesto un avance tecnológico, que ha facilitado el estudio y la evaluación de genes seleccionados en relación con la tolerancia al estrés. Estudios recientes han mostrado que el uso de genes reguladores como factores de transcripción (FTs) es una gran herramienta para obtener nuevas variedades de tomate con mayor tolerancia a estreses abióticos. Las proteínas DOF (DNA binding with One Finger) son una familia de FTs específica de plantas (Yangisawa, 2002), que están involucrados en procesos fisiológicos exclusivos de plantas como: asimilación del nitrógeno y fijación del carbono fotosintético, germinación de semilla, metabolismo secundario y respuesta al fotoperiodo pero su preciso rol en la tolerancia a estrés abiótico se desconoce en gran parte. El trabajo descrito en esta tesis tiene como objetivo estudiar genes reguladores tipo DOF para incrementar la tolerancia a estrés abiotico tanto en especies modelo como en tomate. En el primer capítulo de esta tesis se muestra la caracterización funcional del gen CDF3 de Arabidopsis, así como su papel en la respuesta a estrés abiótico y otros procesos del desarrollo. La expresión del gen AtCDF3 es altamente inducido por sequía, temperaturas extremas, salinidad y tratamientos con ácido abscísico (ABA). La línea de inserción T-DNA cdf3-1 es más sensible al estrés por sequía y bajas temperaturas, mientras que líneas transgénicas de Arabidopsis 35S::AtCDF3 aumentan la tolerancia al estrés por sequía, osmótico y bajas temperaturas en comparación con plantas wild-type (WT). Además, estas plantas presentan un incremento en la tasa fotosintética y apertura estomática. El gen AtCDF3 se localiza en el núcleo y que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional en ensayos de protoplastos de Arabidopsis. El dominio C-terminal de AtCDF3 es esencial para esta localización y su capacidad activación, la delección de este dominio reduce la tolerancia a sequía en plantas transgénicas 35S::AtCDF3. Análisis por microarray revelan que el AtCDF3 regula un set de genes involucrados en el metabolismo del carbono y nitrógeno. Nuestros resultados demuestran que el gen AtCDF3 juega un doble papel en la regulación de la respuesta a estrés por sequía y bajas temperaturas y en el control del tiempo de floración. En el segundo capítulo de este trabajo se lleva a cabo la identificación de 34 genes Dof en tomate que se pueden clasificar en base a homología de secuencia en cuatro grupos A-D, similares a los descritos en Arabidopsis. Dentro del grupo D se han identificado cinco genes DOF que presentan características similares a los Cycling Dof Factors (CDFs) de Arabidopsis. Estos genes son considerados ortólogos de Arabidopsis CDF1-5, y han sido nombrados como Solanum lycopersicum CDFs o SlCDFs. Los SlCDF1-5 son proteínas nucleares que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional in vivo. Análisis de expresión de los genes SlCDF1-5 muestran diferentes patrones de expresión durante el día y son inducidos de forma diferente en respuesta a estrés osmótico, salino, y de altas y bajas temperaturas. Plantas de Arabidopsis que sobre-expresan SlCDF1 y SlCDF3 muestran un incremento de la tolerancia a la sequía y salinidad. Además, de la expresión de varios genes de respuesta estrés como AtCOR15, AtRD29A y AtERD10, son expresados de forma diferente en estas líneas. La sobre-expresión de SlCDF3 en Arabidopsis promueve un retardo en el tiempo de floración a través de la modulación de la expresión de genes que controlan la floración como CONSTANS (CO) y FLOWERING LOCUS T (FT). En general, nuestros datos demuestran que los SlCDFs están asociados a funciones aun no descritas, relacionadas con la tolerancia a estrés abiótico y el control del tiempo de floración a través de la regulación de genes específicos y a un aumento de metabolitos particulares. ABSTRACT Tomato (Solanum lycopersicum L.) is one of the horticultural crops of major economic importance in the Spanish territory. However, its production is being affected by adverse environmental conditions such as salinity, drought and extreme temperatures. To resolve the problems triggered by stress conditions, a number of agricultural techniques that reduce the negative effects of stress are being frequently applied. However, the development of stress tolerant varieties is of a great interest. In this direction, the technological progress in obtaining and analysis of transgenic plants facilitated the study and evaluation of selected genes in relation to stress tolerance. Recent studies have shown that a use of regulatory genes such as transcription factors (TFs) is a great tool to obtain new tomato varieties with greater tolerance to abiotic stresses. The DOF (DNA binding with One Finger) proteins form a family of plant-specific TFs (Yangisawa, 2002) that are involved in the regulation of particular plant processes such as nitrogen assimilation, photosynthetic carbon fixation, seed germination, secondary metabolism and flowering time bur their precise roles in abiotic stress tolerance are largely unknown. The work described in this thesis aims at the study of the DOF type regulatory genes to increase tolerance to abiotic stress in both model species and the tomato. In the first chapter of this thesis, we present molecular characterization of the Arabidopsis CDF3 gene as well as its role in the response to abiotic stress and in other developmental processes. AtCDF3 is highly induced by drought, extreme temperatures, salt and abscisic acid (ABA) treatments. The cdf3-1 T-DNA insertion mutant was more sensitive to drought and low temperature stresses, whereas the AtCDF3 overexpression enhanced the tolerance of transgenic plants to drought, cold and osmotic stress comparing to the wild-type (WT) plants. In addition, these plants exhibit increased photosynthesis rates and stomatal aperture. AtCDF3 is localized in the nuclear region, displays specific binding to the canonical DNA target sequences and has a transcriptional activation activity in Arabidopsis protoplast assays. In addition, the C-terminal domain of AtCDF3 is essential for its localization and activation capabilities and the deletion of this domain significantly reduces the tolerance to drought in transgenic 35S::AtCDF3 overexpressing plants. Microarray analysis revealed that AtCDF3 regulated a set of genes involved in nitrogen and carbon metabolism. Our results demonstrate that AtCDF3 plays dual roles in regulating plant responses to drought and low temperature stress and in control of flowering time in vegetative tissues. In the second chapter this work, we carried out to identification of 34 tomato DOF genes that were classified by sequence similarity into four groups A-D, similar to the situation in Arabidopsis. In the D group we have identified five DOF genes that show similar characteristics to the Cycling Dof Factors (CDFs) of Arabidopsis. These genes were considered orthologous to the Arabidopsis CDF1 - 5 and were named Solanum lycopersicum CDFs or SlCDFs. SlCDF1-5 are nuclear proteins that display specific binding to canonical DNA target sequences and have transcriptional activation capacities in vivo. Expression analysis of SlCDF1-5 genes showed distinct diurnal expression patterns and were differentially induced in response to osmotic, salt and low and high temperature stresses. Arabidopsis plants overexpressing SlCDF1 and SlCDF3 showed increased drought and salt tolerance. In addition, various stress-responsive genes, such as AtCOR15, AtRD29A and AtERD10, were expressed differently in these lines. The overexpression of SlCDF3 in Arabidopsis also results in the late flowering phenotype through the modulation of the expression of flowering control genes such CONSTANS (CO) and FLOWERING LOCUS T (FT). Overall, our data connet SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.