932 resultados para formation processes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germanium (Ge) and Silicon (Si) exhibit similar geochemical behaviour in marine environments but are variably enriched in seafloor hydrothermal fluids relative to seawater. In this study, Ge isotope and Ge/Si ratio systematics were investigated in low temperature hydrothermal vents from Loihi Seamount (Pacific Ocean, 18°54’N, 155°15’W) and results were compared to high-temperature vents from the East Pacific Rise (EPR) at 9°50’N. Loihi offers the opportunity to understand contrasting Ge and Si behaviour in low temperature seafloor hydrothermal systems characterized by abundant Fe oxyhydroxide deposition at the seafloor. The results show that both Ge/Si and δ74/70Ge in hydrothermal fluids are fractionated relative to the basaltic host rocks. The enrichment in Ge vs. Si relative to fresh basalts, together with Ge isotope fractionation (Δ74/70Ge fluid-basalt up to 1.15 ‰ at EPR 9°50’N and 1.64 ‰ at Loihi) are best explained by the precipitation of minerals (e.g. quartz and Fe-sulfides) during higher temperature seawater-rock reactions in the subsurface. The study of Fe-rich hydrothermal deposits at Loihi, largely composed of Fe-oxyhydroxides, shows that Ge isotopes are also fractionated upon mineral precipitation at the seafloor. We obtained an average Ge isotope fractionation factor between Fe-oxyhydroxide (ferrihydrite) and dissolved Ge in the fluid of -2.0 ± 0.6 ‰ (2sd), and a maximum value of -3.6 ± 0.6 ‰ (2sd), which is consistent with recent theoretical and experimental studies. The study of a hydrothermal chimney at Bio 9 vent at EPR 9°50’N also demonstrates that Ge isotopes are fractionated by approximately -5.6 ± 0.6 ‰ (2sd) during precipitation of metal sulfides under hydrothermal conditions. Using combined Ge/Si and estimated Ge isotope signatures of Ge sinks and sources in seawater, we propose a preliminary oceanic budget of Ge which reveals that an important sink, referred as the “missing Ge sink”, may correspond to Ge sequestration into authigenic Fe-oxyhydroxides in marine sediments. This study shows that combining Ge/Si and δ74/70Ge systematics provides a useful tool to trace hydrothermal Ge and Si sources in marine environments and to understand formation processes of seafloor hydrothermal deposits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article examines regulatory governance of the post-initial training market in The Netherlands. From an historical perspective on policy formation processes, it examines market formation in terms of social, economic, and cultural factors in the development of provision and demand for post-initial training; the roles of stakeholders in the longterm construction of regulatory governance of the market; regulation of and public providers; policy responses to market failure; and tripartite division of responsibilities between the state, social partners, commercial and publicly-funded providers. Historical description and analysis examine policy narratives of key stakeholders with reference to: a) influence of societal stakeholders on regulatory decision-making; b) state regulation of the post-initial training market; c) public intervention regulating the market to prevent market failure; d) market deregulation, competition, employability and individual responsibility; and, e) regulatory governance to prevent ‘allocative failure’ by the market in non-delivery of post-initial training to specific target groups, particularly the low-qualified. Dominant policy narratives have resulted in limited state regulation of the supply-side, a tripartite system of regulatory governance by the state, social partners and commercial providers as regulatory actors. Current policy discourses address interventions on the demand-side to redistribute structures of opportunity throughout the life courses of individuals. Further empirical research from a comparative historical perspective is required to deepen contemporary understandings of regulatory governance of markets and the commodification of adult learning in knowledge societies and information economies. (DIPF/Orig.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Educação, Programa de Pós-Graduação em Educação, 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. Methods The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Results Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. Conclusions The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines Initial Teacher Education students’ experiences of participation in health and physical education (HPE) subject department offices and the impact on their understandings and identity formation. Pierre Bourdieu’s concepts of habitus, field, and practice along with Wenger’s communities of practice form the theoretical frame used in the paper. Data were collected using surveys and interviews with student‐teachers following their teaching practicum and analysed using coding and constant comparison. Emergent themes revealed students’ participation in masculine‐dominated sports, gendered body constructions, and repertoires of masculine domination. Findings are discussed in relation to their impact on student‐teachers’ learning, identity formation, and marginalizing practices in the department offices. Implications for teacher education and HPE are explored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudiness

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atombond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the pi-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis contributes to the understanding of the processes involved in the formation and transformation of identities. It achieves this goal by establishing the critical importance of ‘background’ and ‘liminality’ in the shaping of identity. Drawing mainly from the work of cultural anthropology and philosophical hermeneutics a theoretical framework is constructed from which transformative experiences can be analysed. The particular experience at the heart of this study is the phenomenon of conversion and the dynamics involved in the construction of that process. Establishing the axial age as the horizon from which the process of conversion emerged will be the main theme of the first part of the study. Identifying the ‘birth’ of conversion allows a deeper understanding of the historical dynamics that make up the process. From these fundamental dynamics a theoretical framework is constructed in order to analyse the conversion process. Applying this theoretical framework to a number of case-studies will be the central focus of this study. The transformative experiences of Saint Augustine, the fourteenth century nun Margaret Ebner, the communist revolutionary Karl Marx and the literary figure of Arthur Koestler will provide the material onto which the theoretical framework can be applied. A synthesis of the Judaic religious and the Greek philosophical traditions will be the main findings for the shaping of Augustine’s conversion experience. The dissolution of political order coupled with the institutionalisation of the conversion process will illuminate the mystical experiences of Margaret Ebner at a time when empathetic conversion reached its fullest expression. The final case-studies examine two modern ‘conversions’ that seem to have an ideological rather than a religious basis to them. On closer examination it will be found that the German tradition of Biblical Criticism played a most influential role in the ‘conversion’ of Marx and mythology the best medium to understand the experiences of Koestler. The main ideas emerging from this study highlight the fluidity of identity and the important role of ‘background’ in its transformation. The theoretical framework, as constructed for this study, is found to be a useful methodological tool that can offer insights into experiences, such as conversion, that otherwise would remain hidden from our enquiries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The processes involved in the Se electrodeposition, mainly the one related to the formation of H2Se species on Au electrode in perchloric acid solutions, have been investigated through cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), rotating ring-disc electrode (RRDE), and atomic force microscopy (AFM) techniques. In the experiments performed with the EQCM, with the potential sweep in the negative direction, the responses for the mass variation were divided in three well-defined potential regions: A (from 1.55 to 0.35 V), B (from 0.35 to -0.37 V), and C (from -0.37 to -0.49 V). It was verified that the following processes can occur, respectively: the species (AuO)(2)H2SeO3 was desorbed during the AuO reduction, the reduction of Se(IV) to Se(0), and the formation of H2Se. When the potential was swept in the positive direction, the responses for the mass variation were divided in four well-defined potential regions: D (from -0.49 to 0.66 V), E (from 0.66 to 0.99 V), F (from 0.99 to 1.26 V), and G (from 1.26 to 1.55 V), and the described processes in these regions were, respectively: the Se deposition and adsorption of water molecules and/or perchlorate ions, the Se dissolution, the Se incorporating mass in the form of HO-Se, and the Au oxidation (all potentials are referred to the Ag/AgCl electrode). Making use of the RRDE, using the collection technique, the formation of H2Se species during the Se electrodeposition was investigated. Therefore, it was confirmed that this species is formed on the disc electrode between -0.3 and -0.55 V vs the Ag/AgCl potential range (collecting the oxidized compound onto the ring electrode). AFM images also indicated that the surface topography of the Se-massive deposit on Au is different from the images registered after the formation of H2Se species, confirming the cathodic stripping of Se.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Late Cambrian (Furongian) shell beds in the Salta Province of NW Argentina are unique because of the presence of abundant hyolith skeletal remains within them. Hyolith shell beds are located in the mid-upper part of the Lampazar Formation at the Angosto de La Quesera locality, and are the first recorded accumulations of this type in the lower Palaeozoic of the South American Andean Basin. The shell beds are of the order of several mm thick, and are laterally persistent within outcrop scale, with a few metres of lateral development. Two types of hyolith shell beds are recognised: Type 1 is a storm-dominated, event concentration, represented by dispersed to densely packed accumulations of well preserved hyolith and gastropod shells (Strepsodiscus austrinus). Hyolith conchs are current oriented with the long axes parallel to unidirectional flow on the sandstones surfaces. Type 2 shell beds are background, composite concentrations, of poorly preserved, comminuted debris of hyolith shells with associated gastropod and trilobite sclerites (dominated by Parabolina, Beltella and Leiostegium). The genesis of both shell beds was controlled primarily by physical processes, such as storms and current and/or wave agitation. The thickness, simple internal fabric and geometry shown by both accumulations are typical of Cambrian-style shell-beds.